
NAVAL POSTGRADUATE SCHOOL
Monterey, California

00

00

*P T ESIS
AN ENGINEERING METHODOLOGY

FOR IMPLEMENTING AND
TESTING VLSI CIRCUITS

by

Walter F. Corliss II

March 1989

Thesis Advisor Herschel H. Loomis, Jr.

Approved for public release; distribution is unlimited. D T IC
SELECT |
SMAY 26 19'89

Unclassified
security. classification of this page

R EPORT DOC UIAIEN'TATION' PAGE
I a Report Security Classification Unclassified Ilb Restrictive Miarkings

2a Security Classification Authority 3 Distribution Availability of Report

2b Declassification Downgrading Schedule Approved for public release: distribution is unlimited.
.4 Performing Org-anization Report \umber(s) 5 Monitoring Organization Report Number(s)

6 a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School (if applicable,) 62 Naval Postg-aduate School
6c Address (clal, state, and ZIP code' 7b Address (ciry, state, and ZIP code)
Monterey. CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number

'(f appli able;
Sc Address (ciry, state, and ZIP Code)j 10 Source of Funding Numbers

___ Program Element No IProject No ITask No I Nork LUi Acce ssioni \o

11 Title (include securiry class)7c a ton) AN ENGINEERING MIETHODOLOGY FOR IMPLEMENTING AND TESTING
VLSI CIRCUITS
12 Personal Authoris) W\alter F. Corliss 11
13a Type of Report 13b Time Cosered 14 Date of Report (vear, mionth, day) 15 Page Count

Mate' TessFrom To March 19S9 121
16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po-
sition of the Department of Defense or the U.S. Government.
I- Cosati Codes 15S Subject Terms (comunup on reverse ij necessa, 'v and identify b 'y block numiber)j

Field Oroun Subgroup VLSI, MAGIC NOSSIM 11, DAS9IOO, DVS50. Digital Test Facilities

i 9-AMstract I cew. tue cen rcierse if tic cssarv aund idcn;ify bv- block nuotter I
The engineernu2 methodology for producing a full% tested VLSI chip from a design layout is presented. A 16-bit

correlator. NPS CORNSS. that wvas previously designed. was used as a vehicle to to demonstrate this methodologn. The
study of the design and simulation tools. MAGIC and MOSSIMI 11, was the focus of the design and validation process. The
de-sign was then implemented and the chip was fabricated by MIOSIS.

1his fabricated chip v as then used to develop a testing methodology for using the digital test facilities at NPS. NPS
CORNSS was the first full custom VLSI chip. designed at N PS, to be tested wvith the NI'S igital analysis system. TIektronix
DAS 9100 series tester. The capabilities and lim-itations of these test facilities are examdied wvithin this thesis. NIS CORN88
test results are included to demonstrate the, capabilities of the digital test system. A translator. MOS2DAS, was dev eloped
to convert the MOSSINI 11 simulation program to the input files required by the DAS 9100 device verification softwvare,
9IDVS. Fially. a tutorial for using the digital test facilities, including the DAS 9100 and associated support equipments. is
included as an appendix.

Y', Distribution A'.ailabilit) of Abstract 21 Abstract Security Classification
S unclassified unilimited El same as report El DTIC users Unclassified
24'a Name of Responsibio Individual 22b Telephone r include Arca code) 22c Office Symibol
llerschel 11. l-oomis, Jr. (40S) 646-3214 621 in

DD FORM 1473.s4 MAR APR % ; .,,~ ~i~:~surizy classitic:aion itf p~i ee
All other editions are obsolete

U nclassified

Approved for public release; distribution is unlimited.

AN ENGINEERING METHODOLOGY
FOR IMPLEMENTING AND

TESTING VLSI CIRCUITS

by

Walter F. Corliss I
Lieutenant Conunander, United States Navy

B.S., Purdue University, 1976

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1989

Author:

Approved by:

1Ilerschel 6, Loon- s, Jr., T Advisor

an Yang, Secind Reader

-P- d §kw - ! u -47-f L

John P. Powcrs, Chairman,
Department of Electrical and Computer Engineering

Gordon E. Schacher,
Dean of Science and Engineering

ABSTRACT

The engineering methodology for producing a fully tested VLSI chip from a design

layout is presented. A 16-bit correlator, NPS CORN88, that was previously designed,

was used as a vehicle to to demonstrate this methodology. [he study of the design and

simulation tools. MAGIC and MOSSIM II, was the focus of the design and validation

process. The design was then implemented and the chip was fabricated by MOSIS.

This fabricated chip was then used to develop a testing methodology for using the

digital test facilities at NPS. NPS CORNS8 was the first full custom VLSI chip, de-

signed at NPS. to be tested with the NPS digital analysis system, Tektronix DAS 9i00

series tester. The capabilities and limitations of these test facilities are cxamined within

this thesis. NPS CORNS8 test results are included to demonstrate the capabilities of the

digital test system. A translator. MOS2DAS. was developed to convert the MOSSIM

11 simulation program to the input files required by the DAS 9100 device veiification

software. 9)DVS. Finally, a tutorial for using the digital test facilities, including the

DAS 9100 and associated support equipments, is included as an appendix.

Accession For

I NTIS GRAAI
DT'.C TAB 0
Uua ziounced 0

Distibution/
Av'ailabiiity Codes

Avail and/or

iDt;t Special

iii

TABLE OF CONTENTS

1. INTRODUCTION .. I

A. BACKGROUND..I
B. THESIS GOALS..5

C. THESIS ORGANIZATION....................................5

11. DESIGN IMPLEMENTATION.................................. 6

A. NPS CORNSS..6

1. Initial Design Methodology 6

2. Functional Description.....................................S

3. Partitioning for Testability..................... I.......... 12

B. MAGIC LAYOUT SYSTEM..................................13

1 . Silicon Semiconductor Technology OverviewN.....................13

2. MAGIC Layout Features........................ I.......... 17

a. Invoking Commands...................................1 7

b. Basic %Maic Tools....................................IS

3. MAGIC External Interfaces.................................19

a. Circuit Extraction.....................................19

b. Caltech Intermediate Form (CIF)' Calma Stream Format 19

4. Design-Rule Checkinz....................................20

a. Singzle Cell Layot, 20A

b. Hierarchical Layout Rules...............................22

5. MAGIC Layout of NPS CORN88............................23

C. SIMULATION .. 24

1. Preparation for Simulation..................................24

2. Background..................... 24

3. Overview of Capabilities...................................25

4. NPS CORNSS Test Vectors.................................2S

D. CFL .. 28

I. Hierarchical Assembly of Magic Leaf Cells 28

2. CFI. Advantages Disadvantages..............................30i

E. MOSIS..31

iv

1. B ackground 31

2. Preparations Prior to Fabrication 33

. M O SIS Q uality Control 33

III. NPS VLSI DIGITAL TEST FACILITIES 35

A . BACKG ROUN D ... 35

B. DIGITAL ANALYSIS SYSTEM (DAS) 9100 35

1. O verview 35

2. D ata A cquisition .. 36

a. M odules 36

b . M enus37

3. DAS 9100 Pattern Generation 38

4. E xternal Interfaces 39

C. 9100 DEVICE VERIFICATION SOFTWARE 40

1. B ackground 40

2. DVS50 Capabilities and Limitations 41

3. DVS50 Input Program s 41

4. D V S50 M enus .. 45

5. N PS C O R N SS .. 47

a. S et-u p ...4 7

b. Results. .. 49

IV. M OS2DAS TRANSLATOR 58

A . BACKG RO UN D ... 5S

B. MOS2DAS CAPABILITIES AND LIMITATIONS 5S

1. M OSSIM II Comm ands 58

2. File Conversion Process 60

C. OPERATIONAL SHELL 65

V . CO N C LU SION S .. 69

A. SUMMARY 69

B. RECOM M ENDATIONS 70

C . B E N E F IT S 71

APPENDIX A. NPS DIGITAL TEST FACILITY TUTORIAL 72

A. PURPOSE .. 72

B. CAPABILITIES. AND LIMITATIONS........................... 72

C. DVS50 INPUT FILES.......................................73

D. TEST PROGRAM COMPILATION.............................76

E. DUT SET UP... 78
F. RUN NING THE: TEST....................................... 0
G. CONCLUSIONS...82

APPENDIX B. MOSTRANS TRANSLATION PROGRAM................ 89
A. TRANSLATOR SHELL PROGRAM............................ 89
B. TRANSLATOR SOURCE PROGRAM...........................91

APPENDIX C. VECTOR GENERA--TION PROGRAMS................. 103

A. VECTOR SHELL PROGRAM................................ 103-
B. VECTOR GENERATION C SOURCE CODE..................... 104

LIST OF REFERENCES .. 106

INITIAL DISTRIBUTION LIST....................................1(09

LIST OF TABLES

Table 1. NPS CORNSS INPUT PINS 10

Table 2. NPS CORNSS OUTPUT PINS 10
Table 3. CORRELATOR RESULTS (NO MASKING) I I

Table 4. CORRELATOR RESULTS (WITH MASKING) II

Table 5. ABBREVIATIONS FOR SETS OF TILE TYPES 21

Table 6. DESIGN-RULE WIDTH REQUIREMENTS (IN LAMBDA UNITS) . 21

Table 7. DESIGN-RULE WIDTH REQUIREMENTS (IN LAMBDA UNITS) . 22

Table S. DIGITAL ANALYSIS SYSTEM (DAS) CAPABILITIES 36

Table 9. DVSS0 MODULE SUPPORT 41

Table 10. NPS CORNSS INITIAL REGISTER SET-UP 52

Table 11. NPS CORNSS REFERENCE AND MASKING INITIAL REGISTER

V A L U E S 56

vii

LIST OF FIGURES

Figure 1. Design Implementation Process...............................7

Flizure 2. NPS CORN88 Block Diagram................................9

Figure 3. MAGIC Materials Palette 14

Figure 4. MAGIC Layout of a CMIOS Inverter.......................... 15

Figure 5. Manhattan Distance......................................21

Figure 6. NPS CORN88 Hierarchical Structure..........................23

Figure 7. MAGIC to Simulation File Conversion Process..................25

Figure S. MAGIC ".mag" File to ".ntk" file Commands.................... 26

Figure 9. NPS CORN,88 MOSSIM 11 Source Program....................27
Figure 10. CFL Composite Chip Assembly..............................29

Figure 11. NPS CORN88 CFL Block Structure 31
Figure 12. CFL CR -regcell ... 32

Figure 13. 'NPS CORNS88 DVS50 .SRC File 43

Figure 14. NPS C0RN88 DVS5O .DAS File............................. 44

Figure 15. DVS50 Processing Flow....................................46

Figure 16. NPS CORN88 Channel Specifications..........................48

Figure 17. NPS Test Jig..50
Fligure 18. NPS COR'NSS Data Register Test Results.......................51

Figzure 19. NP S CORN88 Combiner Adder Test Results 53
Figure 20. NP S CORNS8 Reference Register Test Results................... 5 4

Figure 21. NPS CORNSS Masking Test Results
Figure 22. NPS CORNS8 Serial Input Test Results........................ 57

Figure 2 3. NPS CORN8S MOSSIM 11 Simulation Program.................61

Figure 24. MOS2DAS ".das" File 62
Fligure 25. NIOS2DAS ".sim" File.....................................64

Figure 26. DAS 9100 and MOSSIM Sampling Differences................... 6

Fi2ure 27. MOS2DAS ".src" File.....................................66

Figure 2S. MOS2DAS C-Shell Operating Program...... 67
Flizure 29. ALUAIi Specifications.....................................74

Figure 30. DOS Commands and File Directory Flow....................... 75

Fiizure 31. ALL 181 ".src" File......................... I............. 7

Viii

Figure 32. ALL 181 ".das" File... 7S

Figure 33. ALIS! ".sirn" File..79

Figure 34. DVSSO Main Menu... 81

Figure 35. ALUISi Channel Specifications............................... 81

Figure 36, DVSSO Test Menu..8S4

Figure 37. Test Jig..s8

Figure 38. Physical Location of the Modules.............................. 86

Figure 39. ALUISi Results..S7

Figure 40. Display Help Menu...88S

ix

ACKNOWLEDGEMENT

The assistance provided by the staff of the Computer Lab in the Electrical and

Computer Engineering Department at the Naval Postgraduate School was invaluable to
the completion of this research. Thank you Dave, Bob, and Elaine for your professional
assistance, your patience. and your sense of humor.

1. INTRODUCTION

A. BACKGROUND
"For the past 20 years Lhip complexity and thus the functional capability of a single

integrated circuit (IC) have roughly doubled ever year." [Ref. l,p. 1]. Chip development

has progressed from the small scale integration (SSI) to that of the very large scale in-

tegrated (VLSI) circuit. Current technology considers a VLSI chip to contain more than

100.000 gates and transistors. As advances have been made in the manufacturing process

and composition materials, the chip density has become greater and the chips operate

at a faster rate. This growth in more devices per unit area and complexity of VLSI cir-

cuits has required that the testing and validation process of these chips become more

sophisticated. Most custom VLSI chips that are developed are produced for a specrCl'c

purpose and are referred to as application specific integrated circuits (ASICs). For each

of these full custom chips a methodology must be used to implement and validaLe the

design, functionally test the completed cell before manufacture, and comprehensive

testing of the VLSI chip after it returns from the manufacture's foundry. Again. due to
the complexity of the circuits this methodology is often driven by the computer tools

that are available to assist the circuit designer and test engineer. Computer-aided design

(CAD) computer-aided testing (CAT) and computer simulation routines have become

essential in the development of high performance VLSI chips.

CAD programns assist the VLSI chip designer in the physical layout of the design

circuitry. These CAD programs help isolate the designer from the masking details. al-

lowing the design effort to concentrate on higher level development. Illustrating the

explosion of interest in the area of CAD development, a recent Computer Design issue

[Ref' 2], listed over 29 commercial vendors with 53 different models of printed circuit

board CAD systems. The printed circuit board based CAD system uses a combination

of specially designed hardware and software to layout the design. At the Naval Post-

graduate School (NPS), the CAD layout tools of MAGIC and GENESIL are imple-

mented in software.

MAGIC. developed at the University of California at Berkeley, is a research soft-

ware tool that is installed on the Digital Vax 780. 1185 and three Integrated Solutions

Incorporated (ISI) work stations. It provides the circuit designer with an interactive

layout editing system for large-scale MOS custom integrated circuits and is discussed in

detail in [Ref. 3]. It allows the designer to engage in full custom VLSI design from the

transistor to the library cell level. Knowledge of silicon semiconductor technology is

required for various forms of transistor dexelopment but designs at the gate level and

higher are possible by using library cells that have already been designed. Once the cells

have been developed, or recalled from the cell library, MAGIC can assemble them hi-

erarchically into the required circuitry. It also provides a powerful router to establish the

connectivity between cells. One of the key advantages of using MAGIC is the'feature

that is provided called design-rule checking. MAGIC maintains a continuous design-rule

check to ensure that the proper topology and layout parameters are maintained for the

technology (CMOS,NMOS, PMOS) as well as the technology required by the foundry.

This design-rule check is updated incrementally during the design and if an error occurs

then that area of concern is highlighted by white dots. Magic does not offer any timing

or fault isolation simulation, but the MAGIC design file can be extracted and several

simulation tools can then be run to validate the design.

"The GENESIL Silicon Development System is a comprehensive turnkey design

automation system for creation of integrated circuits, NMOS or CMOS." [Ref. 4].

GENESIL is a commercial CAD tool from Silicon Compiler Systems that also runs on

the V.\ with an interface either a schematic capture graphics display terminal or from

its own graphics terninal. The user manual for the system [Ref. 4] stresses that the goal

of'GENESIL is to make IC design approachable to systems designers who lack IC de-

signer expertise. To that end GENESIL is a menu driven interactive layout editing

system that concentrates on high-level systems design. There are hundreds of complex

functional parts available in its library of cells, and the designer selects the cells from

which to build and connects them together with the netlist of routing commands.

It is important to stress the difference between this method of assembling cells in

GENESIL contrasted to that of the MAGIC CAD tools. The GENESIL system de-

slgner does not view or build the library cells below the gate level. No knowledge of

silicon seniconductor technology is required by the designer and there is no reason for

GENESIL to provide for design-rule checking because the library cells have already met

all design performance criteria. GENESIL also provides a design verification package

as part of its software package. Timing analysis, power requirement analysis, and au-

tomatic test generation allow the designer to functionally verify that the chip design is

sound. This V, done entirely within the GENESIL system without interfacing with other

simulation software. This definitely speeds up the design and verification process of the

custom VLSI chip considerably. Decreasing the development time of the VLSI chip en-

2

courages the designer to experiment and optimize the circuit design. Once the design is
set and verified, GENESIL can translate the design to the geometric masking data used

by several different manufacturing foundries. From design concept to fabrication tool-

ing, GENESIL produces high performance custom ASIC designs. Three NPS graduate

thesis illustrate the robust features of the GENESIL silicon compiler. Settle examined

the design methodology of using the GENESIL silicon compiler by designing a pipeline

16-bit multiplier [Ref. 51. Rocky implemented a Kalman Filter Algorithm as an ASIC

on GENESIL [Ref. 6]. Davidson examined testability strategy using GENESIL's fea-

tures on Automatic Test Generation (ATG) and the test latch library cell [Ref. 71. Re-

viewing these thesis will provide a solid foundation for utilizing the GENESIL silicon

compiler.

MAGIC is the CAD tool used by NPS students enrolled in VLSI course work and

was used for the development of NPS CORNSS during this thesis research. It stresses

silicon semiconductor technology and provides a greater insight into masking design and

layout rules. But, verifving a MAGIC design requires that the circuit must be -xtracted

into a format that a computer simulation model will utilize. The three electrical circuit

simulation models that are widely used at NPS are MOSSIM II, SPICE, and Register

Notational Language (RNL).

MOSSIM II is a logic simulator based on the switch-level logic model. It models a

.MOS digital circuit as a network of nodes connected by transistor switches and can ac-

curately model such circuit structures as bi-directional pass transistors. ratioed and

complementar- logic buses. dynamic memoryv and charge sharing. MOSSIM II, de-

scribed in detail in the user's manual [Ref. 8 1, is designed primarily for simulating

clocked systems where a clocking scheme consists of a set of state sequences to be ap-

plied cyclically to a set of nodes. Identifying the input forcing vectors and the outputs

to be watched. MOSSIM II will run the modeled circuit and produce the simulated

output results at each clock cycle identified. Although MOSSIM 1I provides minimum

timing information, it can identify potential timing errors. Because MOSSIM II is based

on a switch-level model, it can handle large-scale sequential and combinational logic

design projects relatively quickly, but it can not be used on analog designs.

Another digital circuit simulator, RNL. is a timing simulator for digital MOS cir-

cuits. It is an event-driven simulator that uses a simple resistance and capacitance (RC)

model of the circuit to estimate node transistor time and to estimate the effects of charge

sharing. RNL provides similar features to MOSSIM II which are outlined in the RNL

user manual [Ref. 9]. The user interface for the RNL simulation program is a version

3

of LISP. RNL appears to run as fast as MOSSIM II but it can not handle bi-directional
pass transistors. It also can only be used to simulate digital circuitry and can not be used

on analog circuitry.

SPICE simulation is based on the numerical solution of the network's differential
equations. After the MAGIC file is extracted, each transistor, resistor, and capacitor is

modeled. Detailed instructions on using SPICE are included in users guide [Ref. 10] and
are applicable for analog and digital circuits. It is important to note that because SPICE

computes the differential equation for each transistor it is very slow and is practical for

only small circuits or in validating library cells. It does produce superior simulation
timing results, electrical parameters at all observed nodes, and statistical features that
allow the designer to examine in detail the complete operation of the circuit. For that
reason SPICE is valuable in validating individual leaf cells, but is seldom used on the

entire VLSI digital designs.

Once the final design has been functionally validated it must be packaged for the
manufacturing foundry. MOSIS is an a acronym for MOS Implementation System and
acts as a clearing house facility to handle the details in manufacturing a chip. Coordi-

nated from the Information Sciences Institute of the University of Southern California
MOSIS ensures that the chip has correct syntax upon receipt of the layout geometry and
delivers a set of bonded and packaged chips to the user. This can be done at a very
reasonable cost because several different designs of the same silicon technology share the

same silicon wafer. The complete process from submitting the VLSI chip layout to the

delivery by MOSIS of the fabricated chip is outlined in the users manual [Ref. 11].
Once the VLSI chip has been manufactured and returned to NPS, the Tektronix

DAS 910o series tester is used to test the fabricated chip. This stand-alone, digital anal-
vsis system can functionally verifk. that the VLSI chip meets the required performance

standards for various operational speeds. The user manual for the Tektronix DAS 9100
series tester [Ref. 12) details the pattern generation and data acquisition features. The

DAS 9100 tester at NPS can also link to a personal computer (PC) and device verifica-
tion software (DVS). This configuration generates test patterns in vector format and

configures the Tektronix DAS 9100 tester to the device under test (DUT).

When designing a custom ASIC, it is extremely important for the design engineer
to take into consideration and understand all the tools that are available. The testing and

testability of a VLSI circuit must be considered in every phase of the chip development,
from the conceptual design phase of the circuit to the final functional validation of the
manufactured VLSI chip.

4

B. THESIS GOALS
This thesis will exanine the methodology used to produce a VLSI chip from initial

design to final validation of the manufactured VLSI chip. concentrating on the testing

and testability issues. The development of a 16-bit correlator, NPS CORN88. will be
followed throughout the phases to illustrate the process methodology.

Another goal of the thesis is the development of a program that will translate the

results of a Mossim II simulation program to that suitable for use in the Tektronix DAS
9100 series tester. An introduction for the new user to the Tektronix hardware test
equipment, and associated software features, will also be presented. A tutorial for the
digital test facilities at NPS is presented as Appendix A.

C. THESIS ORGANIZATION
Chapter II provides the methodology for taking a design from the conceptual phase

to the completion of the VLSI chip. This will include: a functional overview of NPS
CORNSS. its design implementation in Magic. follow on simulation with the MOSSIM
II simulator, and subsequent manufacturing by MOSIS. Chapter III will concentrate
on the TEKTRONIX DAS 9100 series tester and its operational capabilities. The test
results of the manufactured VLSI chip, NPS CORNSS, will also be examined and inter-
preted in this chapter. Chapter IV will present the development of the MOS2DAS

translator and other support software. Chapter V summarizes the salient features of the

thesis and offers recommendations for improving VLSI chip testing at the Naval Post-
graduate School. Suggestions for future research are also presented. Appendix A con-
tains a tutorial for the TEKTRONIX DAS 9100 series tester and the NPS digital test
facilities. Appendix B contains the Fortran source program for the MOS2DAS translator
and supporting programs. Appendix C contains the source programs necessary for
generating multiple 16-bit MOSSIM II test vectors and calculating the expected results.

.. m mm m m m i m m m

11. DESIGN IMPLEMENTATION

How does a VLSI chip designer advance from the design phase, through the devel-

opmental stage, to having the chip manufactured, using the facilities at NPS? What
methodology is considered at each of the major phases in this process? Figure 1 on page
7 illustrates this processing flow from design to receipt of the manufactured VLSI chip.
This chapter provides an overview of each of the major phases involved in the develop-

ment process. Discussion of each of these phases is augmented by following the devel-

opment of a 16-bit correlator, NPS CORN88. Examples are provided to highlight the
methodology and salient features at each development phase. Testability issues at each
phase will be addressed within that phase. The understanding of each phase of devel-
opment will allow for a smooth transition between phases.

A. NPS CORN88
1. Initial Design Methodology

A correlator takes a binary string from a data source and compares that string
with a reference binary string. The results of this are either an exact correlation, where

each digit of the data string matches that of a reference string, or some subset of that
exact correlation. Because of the many and varied applications that can be performed
by a correlator, NPS CORNSS was designed to be as general as possible and produces
the number of string matches as a binary coded decimal (BCD) output.

The initial iteration of this design effort IRef. 13] was accomplished by Beck and
Galinas, students at NPS. They produced a functional, stand-alone, working prototype
of a correlator at the Magic architecture level. An additional design team composed of
Walt Corliss. Michael Roderick. Yong Ha Ko, and David Carleton, led by Professor
Chyan Yang. optimized the layout of the design, added the pad frame and associated
routing, conducted additional testing. and submitted the finished design effort to MOSIS
for manufacturing.

Throughout this second design iteration the concerns of testability and testing
were addressed. Each individual cell (D flip flop, 2-1 multiplexer, full four bit adder, etc.)

of the optimized design was functionally tested using the MOSSIM II and SPICE sim-

ulators. After these cells were assembled into the correlator, as illustrated in Figure 2
on page 9 by a Coordinate Free Lap (CFL) program, the completed design was divided

into two sections for further testing, the sequential and combinational logic sections.

6

INITIAL DESIGN GATE OR MAGIC LIBRARY

I CELL LEVEL DESIGN

MAGIC CREATE LEAF CELLS GENESIL
1layout from

ASSEMBLE LEAFlirycesCFL AND LIBRARY CELLS

INITIAL FUNCTIONAL simulation
TESTING (MOSSIM 10 1

1111 floor plan

ROUTING timing analysis

switch level

SIMULATIN FINAL TESTING simulation

MOSIS MANUFACTURE CHIP

VLSI CHIP

Figure 1. Design Implementation Process

7

After successfully testing each of these sections the entire design was tested by forcing

every possible 16-bit data string combination available onto the parallel input pins.

Because of the large number of 16-bit vectors that had to be generated, a C language

program was written to generate 65,536 (216) different vectors. Another program was

written to calculate the output for each input vector. A C-Shell program was used to run

the MOSSIM 11 simulation with this exhaustive list of vectors and compare the

correlator outputs to that of the calculated outputs. The source code for these programs

are listed in Appendix C. After the successful completion of this exhaustive test, the

design and simulation program were considered validated.

2. Functional Description

As discussed previously, NPS CORN88 is a 16-bit correlator that compares a

data binary string with that of a reference string and outputs the BCD number of

matches. As illustrated in Figure 2 on page 9. the correlator can be divided into the

combinational and sequential logic sections.

The sequential logic area consists of four 16-bit register banks and various

control signals. Table I on page 10 is a summary of the input and control pins that are

contained in this section. Each of the four 16-bit register banks are identical and hold

data, reference, masking and test binary string information. The register bank consists

of 16 -D- flip flops controlled for either serial or parallel input by a 2-1 multiplexer and

the serial parallel control (SPCON) line. In the parallel load mode the data string is

loaded into the register bank that is selected by that control line. The active control line

allows the clock to toggle the input into the register and inhibits the other registers. In

the serial data mode the register banks can be loaded either one at a time or simultane-

ously. If the serial control line is selected and the associated control line is activated, the

data on the input serial line to each register bank is passed. The serial string is rippled

from one bit to the next bit in the register bank at the falling edge of the clock. If de-

sired. the output control line (OUTCON) can be active every 16 clock cycles to gate the

output and synchronize the serial data stream. A listing of the correlator output pins is

included in Table 2 on page 10.

After the register banks are loaded, the correlation process takes place at each

clock cycle. The exclusive nor (XNOR) circuitry compares each bit of the data register

bank and the reference register bank and if a match is obtained a 1' is present. The

mask register allows the user to select the bits to be compared by blocking the output

of the XNOR circuitry. If the mask register is loaded with all 'l's all compared bits from

8

OUTPUTS

ADDERZ

ADDE DDERZ

00 COMWINER
Z7 0

o I-

CL'

ci <

cC: C)) (9

c a: cc:
00 c (f-

<- 0 LU ')

I-L

(ID
z Lz
0 Go(f
C))

Figurez 2. ZP CON8Bo)iga

Table 1. NPS CORN88 INPUT PINS

NAME DESCRIPTION

In 1-16 Parallel input pins

SPCON Serial or parallel load
DATACON Controls DATA register bank

MASKCON Controls the MASK register bank
REFCON Controls the REFERENCE register bank

OUTCON Toggles the output

CLOCK Controls the timing of the chip
SDATIN Serial data for DATA register bank

SMSKIN Serial data for MASK register bank
SREFIN Serial data for REFERENCE register bank
TSTCON Allows the XNOR circuitry to enter the TEST register

bank
PADIN Test signal to check operation of the input pad

VCC Power connection to the chip
GND Ground connection to the chip

Table 2. NPS CORN88 OUTPUT PINS

Name Description
OUT 1-5 Output coded decimal pins

SDATOUT Serial output from DATA register bank
STSTOUT Serial output from the TEST register bank

SREFOUT Serial output from REFERENCE register bank

SMSKOLT Serial output from the MASK register bank
BMSBOUT Output of the most significant bit into the first adder

the XNOR circuitry will be passed to the input of the combiner. Table 3 on page 11,

for both binary values colunms, illustrates the results with the masking feature disabled.

If certain bits are not to be included in the corrclation process then those bits

can be masked by the mask register. With the mask register set to '1' for the bits to be

compared and '0" for the remaining bits, the circuitry will pass to the combiner the

number of matches from the compared bits plus the number of 'O's in the remaining bits.

Table 4 on page 11 column A illustrates that the masking value of '001111111111111 1

10

Table 3. CORRELATOR RESULTS (NO MASKING)

REGISTER BINARY VALUES A BINARY VALUES B
DATA REG IN 1111111111111111 0000000011111111

REF REG IN 1111111111111111 11111111

MIASK REG IN 1111111111111111 1111111111111111
XNOR REGOUT llllllllllllllll 0000000011111111

BCD OUT DIGITAL 10000-16 01000.08
OUT

will compare bits 3-16 for matches, and that number of matches plus the first two bits

will gixe the number of 'l's passed to the combiner. This method of implementing a

masking scheme was chosen because, no matter how many bits to be compared, if the

bits chosen match perfectly then the output will be a BCD '10000', or the decimal

equivalent of 16. This allows the designer to check the output pin OUT5 to determine

if a complete correlation is obtained, no matter how many bits were masked. Table 4

column B demonstrates this feature.

Table 4. CORRELATOR RESULTS (WITH MASKING)

REGISTER BINARY VALUES A BINARY VALUES B

DATA REG IN 0000000011111111 0000000011111111
REF REG IN I11111111111111111 1 11 1 1 1 1

MASK REG IN 0lllllllllllll 0000000011111111

XNOR REG OUT 000000011111111 0000000011111111

BCD OUT DIGITAL 01010.8 10000 16
OUT

It is important to note that each bit of the correlator is treated the same; that

is, the position of the bit is irrelevant. Serial output lines from each register bank allow

for expansion of the correlator. With the addition of an external adder, two correlators

can be combined and a 32-bit correlation process is possible from either serial or parallel

input data. The test register bank in this section was included to improve testability and

will be discussed in the next section on testability issues.

11

The combinational logic section contains combiner arid adder circuits. The

combiner is four identical logic circuits that each convert a four input signal from the

XNOR circuitry to three outputs that represent a BCD number. For example, if the four

input lines to the combiner where all 'l's. then the three lines out of the combiner would

be '100' or the decimal representation of four. The outputs of the combiners are then

processed by the adder circuitry. This network is composed of three 4-bit full adders.

In the first set of two full adders, each adder adds the three outputs from two of the

combiners and produces a 4-bit result of the number of 'l's on the input lines. The

carry-in and the most significant bit to each of these two adders are set to '0'. The final

adder adds the results from the previous set of adders. The final result is the five output

lines which includes the carr- out pin. If the data stream matches the reference stream

and the mask register bank is set to all 'l's, the output from the last adder is '10000' or

the decimal equivalent of 16. When the output control line (OUTCON) is active the

outputs are presented at each clock cycle.

3. Partitioning for Testability

The functionality of the design was validated by the MOSSIM II simulation

program. but the design offered little observability within the circuit. The initial design

used 35 pins of a 40 pin pad frame package leaving five pins to access the internals of

the chip for possible fault isolation. Although other VLSI chips have been manufactured

for NPS by .MOSIS, this was the first chip that would be tested upon return. With that

in mind it was decided that adding complex circuitry to conduct insitu testing or adding

redundant features was increasing the risk of producing a faulty VLSI chip. However.

a test register was added to partition the combinational section from the sequential sec-

tion. When the test control line (TSTCON) is raised, the input to the combiner from the

XNOR circuitry is fed to the test register bank. The output of the register bank is then

clocked out serially and read from the corresponding serial output. This allows for

observabilitv of the critical interface between these two sections. An input pad

(PADIN) and an output pad (PADOUT) were connected without additional circuitry to

validate the pad frame characteristics. The remaining pin was taken from the most sig-

nificant input bit of the adder to check the output of the combiner. This partitioning

of the design, while not elegant, significantly increased the observability of the manu-

factured chip.

12

B. MAGIC LAYOUT SYSTEM

MAGIC is an interactive layout editing system that was developed at the University

of California at Berkeley for the design implementation of custom VLSI circuits. At

NPS it allows the circuit designer, using a mouse and either the Advanced Electronic

Device (AED) or one of three Integrated Solutions Incorporated (ISI) work stations, to

layout circuits from the transistor device level to a full custom VLSI circuit. If transistor

level design is required then knowledge of silicon semiconductor theory is a prerequisite.

The goal of MAGIC "... is to increase the power and flexibility of the layout editor, so

designs can be entered quickly and modified easily." [Ref. 14 ,p. 20]. Additional goals

for an efficient routing capability, short turnaround time for small bug fixes and allowing

the designer the ability to rearrange a cell in order to try out a different topology were

also considered by the designers of MAGIC. Along with these layout goals a design-rule

checking procedure to incrementally check a circuit for proper layout during the circuit

creation was developed. This section will not attempt to provide the details that a de-

signer must know to produce a design layout in MAGIC. The topographical layout

procedures are described in detail in the nine tutorials provided in the MAGIC user's

manual [Ref. 3]. An overview of' silicon semiconductor technology, selected layout fea-

tures of MAGIC, and an examination of the design-rule checking process will be dis-

cussed in this section.

1. Silicon Semiconductor Technology Overview

"A metal-oxide-silicon (MOS) structure is created by superimposing several

layers of conducting, insulating and transistor forming materials." [Ref. 15.p. 51.

Figure 3 on page 14 is the palette of materials that can be combined in MAGIC to

construct a VLSI circuit. The principle transistor building blocks are the ndiff, pdiff, and

polysilicon materials. The ndiff material is negatively doped silicon that is rich in

electrons and superimposing this material with polysilicon is interpreted by MAGIC as

a nMOS transistor. A pMOS transistor is created by overlaying the polysilicon with a

positively doped silicon or pdiff material. The technology that embraces both nMOS and

pMOS technologies is called Complementary MOS (CMOS). MAGIC allows imple-

mentation of both nMOS and scaleable CMOS (SCMOS). SCMOS is CMOS technol-

ogy that can scale the physical dimensions of the completed design prior to chip

fabrication. CMOS was selected to produce NPS CORN88 because of its almost zero

static power dissipation, its rise and fall transition times are of the same order, and

transmission gates can be cascaded in CMOS but not in nMOS.

13

met all

blue df

I-

metal2

purple

m2

redn

Figure 3. MAGIC Materials Palette

MAGIC layout is based on the Mead-Conwav style of design which simplifies

design rules and circuit structures. These simplified design rules are possible because only

designs whose edges are vertical or horizontal are allowed. This design restriction sac-

rifices some chip density, but it is compensated for by reducing design time. An exam-

ination of' a C.MOS inverter, from the functional schematic to the MAGIC graphical

layout represented in Figure 4 on page 15, will illustrate the basic fundamentals required

in building a CMOS circuit.

The CNIOS inverter is composed of an nMOS transistor and a pMOS transistor.

These transistors are often referred to a N-switch and P-switch, respectively, because

that is their basic function in a digital circuit application. A '0 closes a P-switch and a

"1' closes the N-switch. In the CMOS inverter the P-switch is located on top and con-

nected directly to Vdd. When a '0' is applied to the gate of the P- switch then the switch

closes and Vdd is switched to the output. The '0' is also applied to the N-switch at the

same time and the N-switch is turned off. When a '1' is on the input of the N- switch

14

Vdd

i
~ ~~~~.......• .:.:.. :+.:. ...

I [poly

NPUT -3 j T j_1

'N

,NrU I jn -IJPU :UT

............
......v..-.--..•

G o u n c...
.. . .. ========= = = .

Vd c

i L

Grounc g ea

Figure 4. MNAGIC Layout of a CMIOS Inverter

the switch is closed and ground is passed to the output. The P-switch with a '1 onl the

input is turned off. In the MAGIC design of the inverter the interactive editor interprets

the ndiff or pdiff over-laid on the polysilicon as a nMOS or pMIOS transistor, respec-

tively. An alternative to painting ndiff or pdifT material over polysilicon Is to use the

nfet or pfet paint from thle palette to create the appropriate transistor. Besides thle two

transistors in the Inverter. Ficure 4 shows the metall runs of Vdd and ground. The Vdd

is physically connected to the pdifT material with a contact called pdiflfcontact or pdc.

Conversely the ground connection to the n-Julf material is called ndiffcontact or ndc.

When the MAGIC design is readied for fabrication, and a CIF file is generated, the

MAGIC program wvill Cut a connection square in the mask to allow for the physical

15

joining of the materials. The other two contacts that are associated with the inverter

located on the Vdd and ground metall runs are the substrate contacts. They are used to

maintain proper substrate voltages and to prevent latch-up. The Nncontact or nnc is

to provide Vdd to the n-well around the p-transistors, and Ppcontact or ppc provides

ground to the p-well around the nMOS transistors.

Latch-up is a CMOS circuit parasitic feature that results in the shorting of Vdd

and ground lines together because of the inclusion of both nMOS and pMOS. In the

inverter example listed latch-up could occur during the transition of the input waveform.
There is a remote possibility that both the pMOS and nMOS transistors are conducting

at the same time channeling the Vdd directly to ground. Although this could occur for

only a fraction of second it can damage the circuit over an extended period of time. Al-

though fabrication processes have virtually eliminated latch-up problems the following

design rules from Weste [Ref. 15, p. 59] further reduce the possibility of latch-up occur-

ring.

* Every well must have a substrate contact of the appropriate type.

* Every substrate contact should be connected by metal directly to a supply pad
(i.e.. no diffusion or polysilicon underpasses in the supply rails).

" Place substrate contacts as close as possible to the source connection of transis-
tors connected to the supply rails (i.e.. Vss n-devices. Vdd p-devices). A very
conservative rule would place one substrate contact for every supply connection.

* Place a substrate contact per 5-10 logic transistors.

" Lay out n- and p-transistors with packing of n-devices towards Vss and packing
of p-devices towards Vdd. Avoid convoluted structures that intertwine n- and
p-devices in checkerboard styles.

In the construction of a MAGIC cell the assembly of the materials, contacts,

and routing must meet physical topographical rules. As an example of a simple size rule

is that .Metall width must be at least 3 units wide. The entire set of topological layout

rules are checked by the design-rule checking algorithm and will be discussed in a latter

section.

Additional knowledge of silicon semiconductor technology is required, when

designing a VLSI circuit, to determine the timing and switching characteristics, various

capacitance parasitics, power requirements and physical size of the actual devices. Based

on the size of the device, for example, the length and width of the transistor. MAGIC

includes the resistance and capacitances associated with that component in the extracted

output. The actual mask in CIF format that is transferred to the foundry does not in-

16

clude these capacitances and internal resistances. These capacitances and resistances are

not included because they will be realized in the manufacturing process. will be realized
in the manufacturing process. These lumped capacitances and resistances allow for re-

alistic simulation of the MAGIC design.

An example of the level of silicon semiconductor technology that is required can

be shown by examining the is the previously mentioned inverter. The gain, beta, of a

transistor is computed by:

Jul: [(2-1)

where p is the effective surface mobility of the electrons in the channel, t is the

permittivity of the gate insulator, T,, is the thickness of the gate insulator, W is the

width of the channel, and L is the length of the channel [Ref. 15,p. 40]. The is also
T, I

called the processing gain of the material. Because the processing gain of n-diff material

is twice that of p-diff material, p,= 2pu, the gain of a similar size nMOS transistor is

twice that of a pMOS transistor. Therefore, the width of the pdiff channel must be twice

that of the ndiff channel to provide for the same theoretical gain. The rise and fall time

for the inverter is also dependent on gain and will also be matched if the ratio of width

of the pdiff material is twice the width of the ndifT material, Wp = 2Wn. Figure 4 on

page 15 illustrates that ratio of widths between the pdiff and ndiff materials. The details

of determining associated capacitances, power consumption, distributed

resistance capacitance effects and various other silicon technology concerns are pre-

sented in Weste [Ref. 15] and should not be a concern for the beginning digital VLSI

designer.

Once the basic descriptions for the P-switch and the N-switch are understood.

these switches can be combined in a variety of different configurations to produce nu-

merous sequential and combinational logic circuit designs. If the circuit design can be

realized in a Karnaugh map, then these switches along with a complementary switch or

pass gate can be combined to realize that circuit within MAGIC.

2. MAGIC Layout Features

a. Invoking Commands

As previously addressed, there are nine MAGIC tutorials in the users man-

ual [Ref. 3] to acquaint the new user with the capabilities of MAGIC. Commands can

be invoked in MAGIC in three different ways: mouse, macro and command lines. The

17

box and cursor are the principle focal points on the graphics display to manipulate items.

The cursor is used to select an item and is in the form of a cross hair. The box is usually
defined by the mouse's left and right buttons setting the left lower and upper right cor-
ners of the box respectively. After the box is made it can be relocated to any position
by moving the cursor to the position desired and pressing the right mouse button. The
center button on the mouse is used to "paint" the box the color taht the cursor is
touching. To "paint" is to lay materials, as defined in the palette illustrated in Figure 3
on page 14, into an area bounded by the box.

A macro is another way to control the graphics display and uses previously
defined single keystroke commands. An example of a macro is typing the letter "a",
which will select an item that is enclosed in the box. Macros can also be user defined
to perform repetitive commands.

The third method of invoking MAGIC commands is through the command
line. The command line is entered by starting the command with ":" or ":" and then
proceeding with the command. An example of this type of command is ":quit" which

exits the MAGIC editor.

b. Basic Mlagic Tools

There are three basic tools that can be utilized in the MAGIC layout editor:
box, wiring and netlist. The desired tool can be selected by pressing the space bar at the
">" prompt on the editor screen. Because of its utility, the tool that the MAGIC editor

defaults to is the box tool.

The box tool is by far the most useful tool within MAGIC to layout leaf
cells. Using the box and cursor positions as defined by the mouse. leaf cells can be
"painted" from the transistor level to the most complicated of circuits. The inverter in
Figure 4 on page 15 was "painted" while in the box tool utility. This "paint" feature and
the ability to label various nodes enable the designer to construct a leaf cell. Within the
box tool utility a leaf cell can be copied, reoriented, moved, labeled, and modified based
on which commands are invoked. The power of this utility is evidenced by the fact that
all NPS CORN88 leaf cells were laid out in this box utility. This utility is also useful in
the hierarchical assembly of larger circuit designs by using the ":getcell" command. This
allows several cells to viewed and manipulated on the graphics terminal in order to

produce a much larger cell.

The wiring tool provides an alternative method for manipulation "paint"
and is used for wiring, plowing and defining arrays. The wiring capability is just what
its name implies. It provides a way to select the wire to be connected with the left mouse

18

button and that wire will be extended to the cursor position when the right mouse but-

ton is pressed. The wiring tool also allows cells to copied in the -x" and "y" directions

into an array of identical cells. This provides an easier way to duplicate leaf cells than

was available in the box tool. The plow feature is interesting because it is used to stretch

or compact cells. If it is used to compact cells it will yield the smallest possible

topographical area for the cell within the design-rule limitations.

The third and final tool utility is the netlist tool. This tool makes use of

MAGIC's automatic routing feature to make connections between previously defined

leaf cells. A limitation of this router is that it only works between cells and not between

pieces of a layout and a cell. Power and ground lines have to run to the initial cells by

hand because the automatic router can not handle these cases. This automatic routing

feature is useful when making a large number of interconnections between cells. If this

feature is to be taken advantage of, all connections must abut the edge of the cells. A

netlist is a nienu driven file that describes the set of connections to make between cells.

Once the netlist file has been completed the cells are automatically routed by invoking

the command ":route". This tool is useful because it will route to avoid obstacles in the

routing path and take the most direct path possible.

3. MAGIC External Interfaces

a. Circuit Extraction

The MAGIC extractor can be used on a single cell or a hierarchical design

of many leaf cells. It converts the design layout into transistor sizes and shapes. It also

recognizes nodal resistances and capacitance within the layout and includes those values

in the .ext file. The extractor is relatively fast because if it is extracting a high level hi-

erarchical design it needs only to extract those cells that have been modified and not the

entire hierarchical design.

Once this design is extracted by issuing the command ".ext". the ext2sim

program is used to convert this file into a .sim file. This .sim file is then used as the data

file for the sim2ntk program and that .ntk file is then used as an input for MOSSIM II.

b. Caltech Intermediate Form (CIF)/ Calma Stream Format

CIF and Calma are standard layout description languages used to transfer

mask-level layouts between organizations and design tools. CIF is the best known lay-

out language in the academic community and Calma holds that distinction for the in-

dustrial community. Magic can produce either form of these output files.

CIF is invoked by issuing the ".cif' command when selecting the cell. At

NPS, the CIF file is primarily used as an interface between MAGIC and the Hewlett

19

Packard 7586B plotter for output of hard copy of the MAGIC layout. CIF is also used
to transport the MAGIC file to MOSIS for fabrication.

4. Design-Rule Checking
One of the most important features of MAGIC is the ability to incrementally

check for desiga-rule violations during the layout phase of the design. Each of the tech-

nologies available in MAGIC has their own design-rules that reside in the technology
file, and are primarily used when setting up the MAGIC file for fabrication. During the
design layout MAGIC checks for design rule violations and, if any occur, it will display
little white dots in the vicinity of the error. Because the editor checks for the design-rule
violations incrementally when the layout is complete there is no reason to recheck the
entire design. The design-rule checking feature is applicable to single cell layouts as well
as larger hierarchical design layouts.

a. Single Cell Layouts

When laying out a leaf cell in MAGIC there are three basic sets of rules that
the design-rule checker uses; width, spacing. and overlap [Ref. 3,pp. 255-262]. Know-

ledge of these rules is paramount in order to efliciently layout materials. These layout
materials are listed as tile types and their abbreviations are listed in Table 5 on page
21. The design-rules for CMOS technology are summarized in Table 6 on page 21 and
Table 7 on page 21. The width rule requires that any material or tile types contained
in Table 5 on page 21 must meet or exceed the width specified in Table 6 on page 21
in both the 'x' and "v" directions. The unit of measurement is a lambda unit and that
can be converted to microns if the fabrication technology is known. NPS CORNSS used
3 micron technology for every 1.5 lambda units. For example, if a minimum width of 2

lambda units was used. that fabricated width would be 4 microns.
The spacing rules in Table 7 on page 21 are a little more complicated. The

actual spacing between materials is computed by the Manhattan distance. If the points
are aligned either vertically or horizontally, then the spacing is between adjacent points.
For objects not horizontally or vertically aligned, the distance is the length of the longest
side of the right triangle forming the diagonal between the points. Figure 5 on page 22
illustrates the Manhattan distance and how it is measured. The final column in Table 7
on page 21 indicates whether touching is "ok" or "illegal". If "touching_ok" is indicated
then the materials must be either immediately adjacent or separated by the distance
stated. If "touchingillegal" is indicated then that eliminates the provisions of materials
to be immediately adjacent. "Touchingillegal" also checks the different layers or planes

and will report those violations.

20

spac ri

Y' sspacing

"X spacing

Figure 5. Manhattan Distance

Table 5. ABBREVIATIONS FOR SETS OF TILE TYPES
,. define allDif diffdmc.bc.efet.dfet.dcap

--define allPolv poly.pmc.bc.eFet.dfet.dcap

-.define tran efet.dfet

=detine contact prnc.drnc

=define alliMetal mnetal.pmnc.dmnc.glass

=def ine allpdTypes s.dif.polv..dmc.pmc.hc~dfet.dcap.efe

Table 6. DESIGN-RULE WIDTH REQUIREMENTS (IN LAMBDA UNITS)
vidt allDif 2 Diffusion wvidth must be at least 21

width drnc 4 .1ktal-dliff contact wvidth must be az least 4

widt allPoly 2 Polv-silicon vvidth must be at least2

width prnc 4 Metal-po/v contact wvidth must be at least 4

width bc 2 Buried contact wvidth must be at least 2
w idth e ft 2 Frhancement FET width must be at least 2
width dfet 2 Depletion FET wvidth must be at least 2

width dcap 2 Depletion capacitor wvidth must be at least 2

width jallM etal 3 Metal wvidth must be at least 3

21

Table 7. DESIGN-RULE WIDTH REQUIREMENTS (IN LAMBDA UNITS)

spacing allDif allDif 3 touchingok
spacing allPolv allPoly 2 touching ok

spacing tran contact I touching illegal

spacing efet dfet,dcap 3 touchingillegal

spacing allMetal allMetal 3 touchingok
spacing bc efet 3 touchingillegal

The overlap rule requires that certain kinds of overlays between materials

be prohibited. Transistors can not overlap transistors of the same type. If dmc and pmc

materials are touching they must completely overlap each other. These overlap rules are

required for proper generation of the CIF generation and circuit extraction.

b. Hierarchical Larout Rules

There are three overall rules that govern the design-rule checker when it

applies to a hierarchical layout, and each of these three rules must be satisfied inde-

pendently. A hierarchical layout is built from smaller cells and NPS CORNS8 is an

example of a hierarchical layout. Figure 6 on page 23 shows the cells involved in the

higher level design of NPS CORN88. These leaf cells were combined by a CFL program

and this combination process will be addressed in a later section. Figure 6 on page 23

shows that "regcell" is the "parent" for the five "children" below. "Regcell"is duplicated

in the "x" direction and stored in the parent cell "regbank". The "children", "regbank"

and "comadd" are then combined into the parent "chip". This "parent" "child" relation-

ship must be understood to examine how design-rule techniques are applied to hierar-

chical layouts.

The first design-rule when considering hierarchical layouts is that the

"paint" in each cell must obey all design-rules by it self. The second rule involves the

interface between cells. This interface could create a design-rule error because abutting

connections could violate the design-rules. These errors will show up in the parent cell

at the interface between the two cells. The third error is that each array must be error

free by itself. If the adjoining cells interact to produce a design-rule error the violation

wNill be presented in the parent cell.

22

CRCHIP

CR top] CE righ CR-left CRregbankI R comadd
X 16

CR-regcell1

cR~a CRef CR_mask I CR~ts CR-comp

Figure 6. NPS CORN88 Hierarchical Structure

With MAGIC design-rule features the chip designer can concentrate on the

chip design vice the myriad of design-rule details. If a design-rule error is discovered a

simple command ":drc why" will explain the difficulty.

5. MAGIC Layout of NPS CORN8S

NPS CORNSS was designed as a hierarchical layout of several small cells as il-

lustrated in Figure 6. The cells are a combination of leaf cells from MAGIC's library

of cells. For example, "CR_dat" leaf cell is a "D" flip flop and a multiplexer from the

library. These two cells were assembled, modified and routed so that they would prop-

erly interface with the cells adjoining, both horizontally and vertically. This procedure

was followed for the remaining subcells in the final chip assembly. The use of library

cells not only saved design time but also ensured that those cells would function properly

because they had already been exhaustively tested before inclusion into the library.

As each leaf cell was completed that cell was functionally verified by using the

MOSSIM II and SPICE simulators. Once all the cells were laid out and functionally

23

tested they were assembled into the completed chip with a CFL program. This allowed

for quick turnaround between the modification of a subcell and the assembly of a com-

pleted hierarchical chip layout. The ability to construct a leaf cell and test it during the

incremental design process resulted in a final chip assembly that had only a few routing

and alignment errors between cells.

C. SIMULATION

1. Preparation for Simulation

Once the MAGIC file has been checked for mask layout errors using the

design-rule feature in MAGIC, the file can be extracted for each cell in the hierarchical

design. The files that are produced in MAGIC and the paths to different simulation

routines are illustrated in Figure 7 on page 25. This extracted file contains the nodes

of the circuit and also includes total capacitance to ground, and a lumped resistance

calculation for each node. It further defines the layout of transistors by type and size.

The sim2ntk program sets up the file to be simulated, identifies the input pins and sets

the strength assigned to the transistors, either CMOS or nMOS. The commands re-

quired to convert the NPS CORNSS lay-out design contained in the "CRchip.mag" file,

to the "CRchip.ntk" file that is used in the MOSSIM II simulator, are included in

Figure 8 on page 26.

2. Background

YIOSSI. II is a logic simulator based on switch-level logic that models the

MOS digital circuit as a network of nodes connected by transistor switches. Because of

this logic level modeling. IOSSIM II can handle large VLSI designs with long input

sequence vectors. The MOSSI. I I program is written in Mainsail programing language

and using the network description language (NDL) the user can fully describe a network

to the simulator. If a design can be fully described in this manner, it does not have to

be laid out in MAGIC to be simulated. This feature was not used in the development

of NPS CORN88 and will not be discussed.

The MOSSIM II user's manual [Ref. 8] provides all the details required to use

MOSSIM II. The actual commands that are involved in controlling the MOSSIM 1I

program will be detailed in Chapter 4 along with the development of the MOS2DAS

translator. An overview of MOSSIM II functional capabilities will be discussed in this

section along with the applications that applied to the testing of NPS CORN88.

24

MAGIC

topographical
MOSIS

layout .mag .ext cif - -Plotter
L. File Transfer

EXT2SIM PRESIM

SIM2SPICE SIM2NTK

ISPICEI MOSSIM II

Figure 7. MAGIC to Simulation File Conversion Process

3. Overview of Capabilities

MOSSIM II capabilities can be examined by separating the source program into
two different sections. initialization and drive. Figure 9 on page 27 is the MOSSIM 1I
program that was used to simulate NPS CORN88 and will be used to illustrate the basic

structure of a M OSSIM I I program. In the initialize area the file to be simulated is read,

and the clocking scheme, vector and watch assignments are defined. In Figure 9 on page

27 the file read is "CRchip.ntk" and the clock is three phases. '010'. with a node name

of "clk". The vectors defined are "ins" for the 16 parallel input nodes. "control' f-or the
control lines. "select" to select a serial data input. "nisc" to set up the serial parallel and

output control lines, and finally "outs" to define the five output pins. The watch com-
mand identifies vectors and nodes of interest that need to be observed. The vectors

"outs" and "ins" and the node "clk" are "watched" in this program. Once the initialize

section is complete. the simulator is ready to start handling binary assignments to the

inputs.

The drive section of a MOSSIM II simulation program sets or forces the binary
values to the desired inputs and also sets the number of cycles for the simulator to run.

A cycle is the completion of the one clock cycle. The output values for the watch de-

fined nodes are observed after each cycle or phase as specified. In this case the watch

25

Figure 8. MAGIC ".mag" File to ".ntk" file Commands

command " * " indicates that the outputs will be observed after every clock phase, or

three phases per cycle. The program in Figure 9 on page 27 forces the parallel inputs to

the desired values and the values are then loaded into the respective register at the

trailing edge of the clock pulse. To prevent erroneous data at the output during this

register set up process, the output lines are disabled. Once all the registers are loaded.

the outputs are enabled and the vector "outs" contains the BCD representation of the

number of matches. The remaining program ripples an error bit into each bit of the data

register to verilfy proper operation of the correlator. The output line reports the cycle

number and the nodes of interest. An "X" state is an undefined state and will occur at

a watched node if that part of the network has not been initialized or the node voltage

lies between the logic thresholds.

Additional features of the MOSSIM II simulator can be obtained by setting

"switches" to turn on or off. Four of these switch positions are helpful in run time

testing of the circuits. These run time switches are summarized below [Ref. S,p. 18]:

Ternary--provides a rigorous test to discover possible timing errors. If a design
simulates successfully in the ternary mode the circuit will function correctly for
those input sequences regardless of the actual switching and communications de-
lays of the circuit. This switch must have a two phase, non-overlapping clocking
scheme as the design clock, and will fail for clock generators and edge triggered flip
flops. This switch can also determine race conditions within a circuit.

* Restore--checks for and reports unrestored CMOS logic levels.

* Explain--the simulator makes an attempt to diagnose the reason for the "x" state.

26

>read CR -chip.ntk
#1
1386 nodes, 2939 transistors, 0 blocks

>initialize
>clock clk:010
>vector ins inl in2 in3 in4 in5 in6 in7 in8 in9 inlO

inu inl2 inl3 inl4 inl5 inl6
>vector control dcon rcon xcon tstcon
>vector select sref sdat sxnor
>vector misc spcon outcon
>vector outs out5 out4 out3 out2 outi
>watch /* outs
>watch /* ins elk

>comment load reference data
>force ins:1l1llOOOOOOOO00
> force control :0100
>force select:000
>force misc:l0
>cycle 1

1.11 outs:00000 ins:111lll100000000 clk:0
1.2 outs:00000 ins:1111100000000 clk:i
1.3 outs:00000 ins:11111l11100000000 clk:0

>comment load bit select data
>force ins:1111111111111111
>force control:0010
>cycle 1

2.11 outs:00000 ins:1l11111111l1l1 clk:0
2.2 outs:00000 ins:1111l11l1l11 clk:l
2.3 outs:00000 ins:111l1111111llll1 clk:0

>comment load signal data
>force ins:lll11111ll111
> force control: 1000
>force misc:l1
>cycle 1

3.11 outs:XXXXX ins:111111ll1111111 clk:0
3.2 outs:XXXXX ins:1111111ll1111l1 clk:1
3.3 outs:01000 ins:1111111l111111l11 clk:0

>comnment changes mask register
> force control :0010
>force ins:00000000111l111
>cycle 1

4.11 outs:01000 ins:0000000011111111 clk:0
4.2 outs:01000 ins:00000000111111l1 clk:1
4.3 outs:0l000 ins:00000000l1ll11l1 clk:0

Figure 9. NPS CORINSS NIOSSINI 11 Source Program

27

* Statistics--will print run time statistics including number of steps, CPU time re-
quired to run and other timing details.

4. NPS CORN88 Test Vectors

The selection of test vectors to properly stimulate the circuit design is an im-

portant aspect in the simulation procedure. As mentioned previously a C pro2ram was

written to simulate 65,536 (216) possible test vectors. An additional program verified that

the correct values for each test vector was obtained. These programs took more than

23 hours to simulate on the VAX 1 1,785. While this exhaustive method provided the

maximum test coverage, a subset of these vectors was found to provide acceptable cov-

erage with far fewer test vectors.

This subset of vectors was heuristically determined and included only 63 vectors.

The first 16 vectors rippled an error through the data bits and verified a BCD output of

15 was observed at the output. The second set of 15 vectors insured that the output

would produce BCD values from 0-16. Only 15 vectors are needed because the 13CD

value for 15 was determined in the first case. The next two vector sets involved changing

the reference register and the mask register. Setting the data register with all ones an

error was rippled through the reference register bits and the output observed. The mnak

register was similarly tested with 16 additional vectors. These 63 test vectors func-

tionally xalidated NPS CORNSS and provided a reasonable set of test vectors for

M1OSSI NI II. and the follow on testing of the fabricated chip.

D. CFL

"Coordinate Free Lap tCFL) is a library of subroutines written in C intended to fa-

cilitate the construction of VLSI circuit layouts." [Ref 161. Once the required leaf cells

have been laid out in Magic, then the CFL. algorithms provide powerful tools to dupli-

cate, alien and combine these cells into the assembled chip. The CFL routines were used

twice in the development of NPS CORN88, once to assemble the body of tile chip.

Figure 10 on page 29, and in the final assembly process to attach the pad frame and

associated routing. The description of CFL procedures, format and symbology are de-

lineated in the CFL reference manual, [Ref. 16], but discussion of the salient features of

Figure 10 on page 29 will illustrate the strengths of this program.

1. Hierarchical Assembly of Magic Leaf Cells

As previously mentioned Magic is used to generate the leaf cells that are as-

sembled with CFL to produce a composite chip. The leaf cells used by Figure 10 on

page 29 include the four register cells and an XNOR cell. Each of the register cells

28

#include <stdio.h>
#include <time.h>
#include "cfl.h"

main()t
SYMBOL *chip;

cflsetc("format","magic");
cflstart("scmos");
cflsetv("grain", 1);

chip = ll(gs("CR comp"),gs("CRdat")); line 01
chip = ll(gs("CR ref"),chip); line 02
chip = ll(gs("CRmask"),chip); line 03
chip = ll(gs("CR test"),chip); line 04
ps("CRregcell" ,chip); line 05
chip = nx(gs("CR-regcell"),16); line 06
ps("CR regbank",chip); line 07
chip = ll(gs("CRcomadd"),gs("CR regbank")); line 08
chip = ttdy(gs("CR left"),chip,27); line 09
chip = rr(chip,gs("CRtop")); line 10
chip = ttdy(chip,gs("CR right"), -7); line 11i

ps("CR chip", chip);
cflstop();

Figure 10. CFL Composite Chip Assembly

("CR dat . "CR-ref. "CR mask'. "CRtest") includes a "D" flip flop. 2-1 multiplexer.

and control lines. "CRcomp" contains the XNOR circuitry. Atter the initial setup

commands to link the program to the CFL library the first construction command lies

on line 01. Line numbers have been added to the program in the comments column to

refer to them in this discussion and are not normally part of the program. Line 01 uses

the "s" command to get the library symbols "CR comp" and "CR dat" and the "11"

(lower case LL) command aligns them left border to left border with the "CR dat" cell

on the top. This new cell is stored as "chip". Figure 11 on page 31 illustrates the CFL

construction of the 'CR reccell" after lines 01-05 are completed and the "ps" command

is u;Cd to put "CR regeell" into "chip'. Line 06 duplicates the "CRreecell" 1o times in

2'9

the "x"direction and line 07 stores that symbol as "CRregbank". The remaining lines

align the remainder of the leaf cells to the basic chip. The combiner and adder leaf cell.

"CRcomadd", was built as a large cell because the interconnection between the com-

ponents were difficult to realize in CFL. It was easier to build the cells in Magic and then

duplicate and connect them while observing the results on the Magic screen. The de-

signer must determine if the cell can be replicated more easily in Magic or by using the

CFL program.

2. CFL Advantages/Disadvantages

The obvious advantage for using CFL is that the individual leaf cell can be

modified in Magic and the CFL program can assemble the chip with that modified cell.

If a cell was modified in the Magic drawing (for example, one of the register cells). each

cell of the Magic drawing would have to be modified, or 16 modifications. This could

create errors in the design and also is much more time consuming than using CIL. Use

of CFL reduces the development time considerably and new modifications of the cell can

occur expediently. The disadvantage of using CFL is that the cells must be constructed

block-like for ease in alignment during assembling routines. Each interface that is as-

sociated with that leaf cell must be designed with the adjoining leaf cells in mind.

"CRre2cell" in Figure 12 on page 32 is a good example of vell constructed leaf cells for

use in the CEL program. The cell is "finished" to each border. Notice how the outputs

of each cell must line up with the adjoining cells inputs. The other disadvantage of using

CFL is that of labeling external connections for the chip. If a leaf cell is built with la-

bels. those labels will be duplicated, when the leaf cell is duplicated and any attempt to

run a simulation program using those labels as inputs or outputs would not succeed

because of label duplication. A frame must be built that contains connections to the

composite chip that includes labels. In Figure 10 on page 29, "CRleft", "CR_rieht'.

and "CR_top" provide those connections and associated labels.

In summary, CFL is a powerful assembly tool for leaf cells but not without a

price. The extra effort expended in designing the leaf cell to align properly with adjoining

cells, and providing leaf cells that contain labels and associated connections, could be

considerable and not worth the effort. NPS CORN8S was a combination of both as-

sembly technologies. The combiner adder circuitry was constructed in Magic as a large

leaf cell because the individual modules were easier to connect on the Magic screen. The

individual register and XNOR leaf cells were designed in Magic but assembled into a

16-bit recister bank using CFL.

30

CRdat

CRjtop
CRcomp

0

CRref CR.regbank ID

CR mask

"-" CRcomadd
CRtest

CRregcell CR chip

Figure 1 1. NPS CORN88 CFL Block Structure

E. MOSIS

I. Background

MOSIS. which is an acronym for NIOS Implementation System, provides fab-

rications services for the production of bonded and packaged integrated circuits. Ori-

ginally it provided services to government and educational users but recently it has

expanded to the industrial sector. *IOSIS. as described in the MOSIS user's manual

[Ref. 11]. is able to combine several layout designs from different users of the same re-

quested technology onto a multi-project single silicon wafer and thus dramatically re-

duce the fabrication cost. Tomovich states, "Instead of paying for the cost of

maskmakin2. fabrication, and packaging for a complete run (currently up to between

S50 and S60.000), a designer can receive packaged parts for as little as a few hundred

dollars." [Ref. 17]. Before MOSIS can fabricate the chip. several steps are required to

prepare the final design for fabrication.

31

0 0

Aic

..

13a 13

im

a.

El

iti

a U"

ci. mc

EiUUU U ~ 44-
0 ,1

..

Fiiur 12 C)R-ecl

32

2. Preparations Prior to Fabrication

Once the circuit design has been validated, the designer must choose a pad

frame to encase the design. There - several standard pad frames recommended by

MOSIS and available from their library of cells. The frames come in 28, 40. 64. 84. 10S,

132 pin packages and they facilitate the entire packaging and bonding process. It is re-

commended that one of these standard frames be used along with the SPADS program

to generate the necessary pads and associated frame. Carleton describes the procedures

in producing the pads for NPS CORN88 [Ref. 18]. In all but one instance (the frame

with 84 pins), all standard frames have a substrate connection at pin #1. It is important

to rotate the design to enable this pin to be used as Vdd. The associated routing from

the basic design to the pads is done by a CFL program, whose methodology was de-

scribed earlier. When the entire chip is assembled in a MAGIC file and has been prop-

erlv validated, the file then is converted to the Caltech Intermediate Form. CIF, format.

This is done by loading the entire design on the graphics terminal and typing the com-

mand ":cif' at the prompt. This CIF file is also the form that is needed to print the file

on the NPS Hewlett Packard 7586B plotter.

Now that the CIF file is ready, an account has to be established with MOSIS

to pay for the manufacturing of the chip. "Universities that are teaching classes in VLSI

design may apply for government-sponsored use of MOSIS using the MOSIS applica-

tion form for Education." [Ref. I1.p. 12]. NPS CORN88 was funded through this method

with an account set up by National Science Foundation (NSF).

3. MOSIS Quality Control

Once an account has been established, the designer can send the CIF file to

MOSIS via the Internet, formerly known as the ARPANET. After MOSIS receives the

CIF file it will check that file for syntax errors and thereby validate the syntax. A pro-

gram. CIF-CHECKSUM, can be run on the user system and sent to MOSIS to verif\%

that the file as transmitted was complete. MOSIS does not validate the design; it only

ensures that the CIF file is in the proper syntax and no errors were made in the trans-

mission of that file.

MOSIS also monitors the quality of the fabrication foundry, the mask vendors

and the packaging facility. The mask vendors receive the multi-project tape for E-beam

tooling and the resulting mask must meet tight defect specifications. MOSIS installs
several designs on each of the multi-project wafers to act as process monitors. The yield

and parametric specifications for the process monitors are checked by both the vendor

and MOSIS before the wafer is accepted. Once the wafer is accepted it is sent to the

33

packager for assembly into the dual in-line package, DIP. "Packagers are qualified on

the basis of bond pull tests and must follow strict static electricity control procedures in

handling user's projects." [Ref. I l,p. 2]. When the packaging specifications are met a set

of bonded and packaged integrated circiiits are returned to the user. Mosis produced

twelve NPS CORNSS custom VLSI chips in six weeks at the modest cost of S1400.00.

34

111. NPS VLSI DIGITAL TEST FACILITIES

A. BACKGROUND

As digital technology has matured and become more complex, the capability to test

these circuits have become more sophisticated. The advent of CAD tools to design cir-

cuit layouts has lead to more full custom VLSI design implementations. Each of these

custom VLSI designs requires a unique test program to functionally validate both the

design level and fabricated chip. tinatek states that, "Testing is rapidly becoming the

largest portion of recurring costs in the VLSI device manufacturing process." [Ref. 19,p.

22]. The NPS CORN88 design was previously validated by the MOSSIM II simulator,

fabricated by XIOSIS. and will be used as an example throughout this chapter.

This chapter will examine the digital test facilities at NPS and is separated into three

sections. The first of these sections will exanine the Digital Analysis System (DAS)

model 9100 and its capabilities and limitations. The second section will detail the Device

Verification Software (DVS) model 50 functions and its interface with the DAS 9100.

The final section will discuss the set-up and testing of NPS CORN88.

B. DIGITAL ANALYSIS SYSTEM (DAS) 9100

1. Overvieii

The DAS 9100 is a stand-alone, modular assembly of various configurations

that can perform selected pattern generation and data acquisition functions. This mod-

ularity is engineered into the DAS 9100 mainframe by allowing the user the ability to

install different data acquisition and pattern generation modules. The DAS 9100 Series

operator manual [Ref. 121 details the numerous different module options available as

well as providing an in-depth description of the DAS 9100 functions and capabilities.

Table 8 on page 36 reflect the modules available for the DAS 9100 and summarizes their

capabilities. Up to six of these modules can be installed in the DAS 9100 mainframe.

The DAS 9100 can be used as a logic analyzer, as a pattern generator or as a

combination of both. One of the advantages of the DAS 9100 is that its operations are

controlled by interactive menus. The data acquisition and pattern generation modes of

operation, and their respective menus, will be discussed in this section and is only an

overview of the information contained the DAS 9100 series operator manual [Ref. 121.

The external interfaces from the DAS 9100 will also be addressed in this section. The

35

Table 8. DIGITAL ANALYSIS SYSTEM (DAS) CAPABILITIES

IODULE TYPE # CHNS SPEED MAX
INST

91S16 Pattern Generator 16 50MHz 1 1

91S32 Pattern Generator 32 25MHz 6 1

91A0S Data Acquisition 8 100MHz 4 0

91A 32 Data Acquisition 32 25MHz 3 1

GPIB Interface to II
DVS50

RS232 Connects 2 DAS 1:1
units

Hardcopy Inter- Printer 1 1
face I
Tape Drive Data Storage I 0

actual connections to the device under test (DUT) and the test results will be included

in a latter section.

2. Data Acquisition

a. Alodhiles

The maximum number of parallel data acquisition channels that can be

processed by the DAS 9100 is 104 at one time. This configuration is obtained by in-

stalling three 91A32 modules and one 91A08 module. Some discussion of each of these

modules is necessary to examine the capabilities of the DAS 9100.

The 91A32 can acquire 32 channels at an internal or external clock interval

ranging from 40ns to 5ms or a maximum clock rate of 25NMz. Each 91A32 module in-

stalled can be run at a different clock rate and contains two clock qualifiers. These

clock qualifiers are used by the DAS 9100 to provide a condition on storing the data

acquired into memory. If both clock qualifier lines are used, and if those lines meet

preset conditions, then the data acquired is stored in memory. Each 91A32 module

controls four data acquisition pods that each contain eight probes to hook to the DUT.

The DAS 9100 can support up to four 91A08 modules and each can acquire

and store eight channels. This module, with a special clock probe, can acquire data at

a rate of 100MHz. This module can also use a internal or external clocking scheme and

each module has a clock qualifier line. The 91AOS module can also acquire and store

36

glitches on all acquisition channels. A glitch is defined as two or more transitions oc-

currin2 within any 2iven clock cycle.

The two data acquisition modules, 91A32 and 91A0S, are compatible and

can be used at the same time within the mainframe. The first of these combinations is

the AND mode and operates both modules simultaneously at the clock rate set for the

91A32. The ARMS mode allows different clock rates for the modules, with the 91A32

enabling the 91A0S trigger to produce a display similar to an oscilloscope sweep.

b. Menus

During the logic analysis function of the DAS 9100, the data acquisition

modules acquire and store digital patterns generated by the DUT. Five interactive

menus on the DAS 9100 are used to set up the clocking scheme, specify channel as-

signments, determine trigger specifications and display the data. Each menu is detailed

in its own section of the operator's manual [Ref. 12] but an overview is provided to il-

lustrate the logic analysis function of the DAS 9100.

The Channel Specification menu controls the display format for the incom-

ing data to be used by the Trigger Specification, State Table, and Define Mnemonics

menus. The Channel Specification menus also specifies the input voltage thresholds to

be used by the probes and the which defaults to TTL voltage levels. Each data acqui-

sition probe has a threshold switch physically located on the back of the probe that can

switch to "NORM" or "AUX". The "NORM" position lets the Channel Specification

menu choose between the TTL voltage threshold levels or a "VAR" threshold that can

be set between -2.5V to + 5.0V. If the "AUX" switch is chosen on the probe then the
threshold voltage can be set to MOS voltage ranges. which can be between -10.0%V to

+ 20.OV. The "NORM" or the "AUX" position switch settings can not be mixed in each

pod.

The Trigger Specification menu is used to set up data acquisition and stor-

age conditions. The menu defines the data acquisition modules to be used, determines

the clock rate, sets up clock qualifiers and word recognition patterns. Each of the

modules has its own sub-menu to control the trigger specification. The clock qualifiers

set parameters on when to store data acquisition. The word recognition feature allows

the DAS 9100 to set a trigger for each occurrence of the word in the data acquisition

process. This makes it relatively easy to find a high interest pattern or to use that trigger

to start another set of pattern sequences. Usually, both the clock qualifier and word

recognition features are set to the "don't care", "X", symbol to allow storage of all data

acquired and not set the trigger on the word recognition feature.

37

The sub-menu for the 91A08 does everything that the 91A32 does and it can

set the trigger on glitches. The 91A0S always acquires and stores the glitches, but if the

trigger is set "on" for glitches it is easier to find where the glitches occurred. This menu

also sets up whether the ARMS or AND clocking scheme is to be employed.

The State Table menu provides access to the data acquired and reference

memories. This menu can show either the data acquired from the sub-menu acquisition,

the reference memory from the sub-menu reference, or a comparison of both reference

and acquired data. This menu is useful when comparing two files but the information

is in hex format and not waveform display so it can be tedious to compare.

The Timing Diagram menu displays the most recently acquired data in a

standard digital waveform format for both the 91A32 and the 91A08 modules. Up to

16 channels can be displayed and this menu can magnify the display, step through the

entire memory of acquired data a "window" at a time. place a cursor at a run time of the

pattern and read out the digital values of all channels acquired. The waveforms corre-

spond to the pod that acquired the data and names can be added to the waveform dis-

play to make it more intelligible.

The final menu associated with data acquisition is Mnemonics. This menu

can generate the set up for the state table display. Several different tables can be defined.

and then the data acquired can be presented in format of that table. This is particularly

useful if the user wants to observe several different formats of the acquired data.

The data acquisition features of the DAS 9100 are impressive but it can be

tedious to enter the specifications via the DAS 9100 keyboard. The menus make it

somewhat user friendly, but a study of the user's manual is required to use data acqui-

sition on even the simplest circuit. The DAS 9100 at NPS lacks a tape recorder to save

all the sct-up data and reference waveforms. These must be initialized every time the

DAS 9100 is powered up. This is not only tedious and inconvenient, but it is an excel-

lent opportunity to make input errors. Nevertheless, the data acquisition function of the

DAS 9100 does provide the user with a valuable tool to analyze the fabricated chip.

3. DAS 9100 Pattern Generation.

The DAS 9100 generates clock and data signals to the DUT in the pattern

generation mode. Two pattern generator modules are available, 91S16 and 91S32. The

clocking rate for either module is limited to 25MHz and can either be internally or ex-

ternally generated. If all six modules are configured to 91S32 pattern generation mod-

ules the DAS 9100 can provide 192 channels of patterns. This would leave no slots

available for data acquisition, so the practical limit for pattern generator modules. if only

38

one DAS 9100 is used, is less. Patterns can be generated in either of two ways. The

91S16 is an algorithmic pattern generator that uses a nine program instruction set to

provide branching. looping, and other algorithmic patterns for 16 channels. Only one

91S16 can be installed in the DAS 9100, but it can be used as a controller for the in-

stalled 91S32 modules.

Each 91S32 module generates 32 channels of RAM-based patterns. This feature

requires the user to input each channel sequence into RAM memory. If the 91S16 and

91S32 modules are installed together, the 91S16 controls the master cycle clock. There

are two operating modes when the two pattern generator modules are to be operated

simultaneously, sequential and follow 91S 16.

In the sequential mode each module operates separately but the 91S16 supplies

the clock signal. When the 91S 16 algorithm reaches the end of its program it will recycle

until the pattern sequence generated by the 91S32 is completed. In the follow 91S16

mode the 91S16 has active control of the pattern generated by the 91S32 and can algo-

rithnicallv control the pattern sequence.

The difficulty in using the DAS 9100 for pattern generation is the same difficulty

that was mentioned for the data acquisition feature, the tedious manner that the input

must be specified. While 16 channels can be generated by an algorithm controlled by

the 91S16 module, the 91S32 pattern sequences require each channel to be individually

defined by use of the keyboard. This could be a very long process if a long pattern se-

quence was required for many channels. An interface with a tape recorder, or another

memory storage device, that could save and load these long patterns once the power was

shut down would be invaluable.

An important feature of the DAS 9100 is the ability to run a pattern sequence

test pattern and compare until the next sequence either compares or do not compare.

As an example, the initial results of the NPS CORNSS test sequence were stored in the

compare file. The test was rerun and compared with the original test until an error was

found. This enabled many test runs to be compared to each other to run a much longer

test.

4. External Interfaces

There are four external interfaces defined in the DAS 9100: General Purpose

Interface Board (GPIB), RS-232, Tape drive, and Printer. The GPIB interface allows

parallel data transmission between a host computer and the DAS 9100, which acts as the

talker and listener. The NPS test configuration is set-up so that a personal computer

39

(PC) running the DVS50 software program can provide the inputs to the DAS 9100 and

display the data acquired from the DAS 9100 via the GPIB interface.

"The RS-232 interface allows two DAS 9100 systems to be linked together for

a master slave transmission." [Ref. 12,pp. 1-3]. This allows the master DAS 9100 to

control the acquisition of data and pattern generation of another DAS 9100 unit. A

printer interface is provided to produce hard copy results for latter analysis. The final

external interface capability is through a tape drive unit. This allows storage of all the

information in the DAS memory, including the set-up of all the menus. This tape drive

feature would be essential if the DAS 9100 mainframe was operated independently. This

is because of the time it could save in the set-up of menus and in the generation of long

sequences of patterns. The configuration at NPS does not have a tape recorder, but the

DVS50 personal computer supported software performs the function of the tape re-

corder, so the tape recorder is not necessary.

An additional interface option available for the DAS 9100 is a power supply to

apply voltage to the module pods and the DUT. This power supply is not installed at

NPS and a Power Designs Model 3650-S serves as the system power supply.

C. 9100 DEVICE VERIFICATION SOFTWARE

1. Background

The most difficult aspect in using the DAS 9100 mainframe as a stand-alone

system is the setting up the menus, data acquisition channels and pattern generation

sequences via the DAS 9100 keyboard. The 9100 Device Verification Software (91DVS)

allows the user to specify the data acquisition channels and generate long sequences of

patterns through a high level language program. The 91DVS provides a user-friendly

menu driven program to functionally test the DUT and is defined in the 91DVS user's

manual [Ref. 201. The 91DVS requirements include DOS 3.0 or higher, 512K-byte of

memory, IBM color graphics card and a GPIB interface board supplied with the 91DVS

software. Two different software packages are provided with the 91DVS, DVS50 and

DVS25. The functions of both programs are similar, but the DVS50 is installed at NPS

because it offers an automatic compare feature and supports the tri-state control fea-

tures.

This section will include the capabilities and limitations of the DVS50 program,

the menus required for operation, and a description of the two data files necessary to

provide input to the DVS50.

40

2. DVS50 Capabilities and Limitations

The DVS50 program can support up to three DAS 9100 mainframes and

Table 9 on page 41 lists the DAS 9100 modules that are supported by DVS50. While

the DVS50 can support up to 192 pattern generation channels, all pattern generator

modules must reside on the same DAS 9100 mainframe. The acquisition modules may

be in any of the three DAS 9100 units but, if both the 91A08 and 91A32 modules are

used, they must not be mixed in the same DAS 9100. Additionally, if a 91A08 module

is used, one must be installed in slot six of the DAS 9100.

Table 9. DVS50 MODULE SUPPORT I

MODULE TYPE SPEED
91S16 Pattern Generator 50MHz

91S32 Pattern Generator 25MHz
91AQS Data Acquisition 100MHz
91A,2 Data Acquisition 25M Hz

An additional limitation is that the clock rate for the pattern generator and the

data acquisition modules must be clocked at the same rate. The acquisition module are

clocked externally by the master clock of the 91S16 or the 91S32 module.

3. DVS50 Input Programs

There are two user generated data files necessary to set-up the DVS50 for test-

ing: test program file. ".src". and the test pattern file, ".das". The test program file

specifies the test sequence, timing. threshold and power supply definitions. Figure 13

on page 43 was the test program used for NPS CORNSS, and it will be examined to il-

lustrate the details of the ".src" program. The key word PROGRAM must start the

".src" program with the name of the program following this key word. The asterisk, "*",

indicates that the remainder of the 80 column line is ignored. This is used to section the

program and to provide comments within the program to increase clarity of the pro-

gram. The next section is headed by the key word PINDEF and it identifies pin names,

pin number assignments on the fabricated chip and the DVS50 attributes for that pin.

The following attributes are supported by DVS50:

9 PAT--pattern generator output channel

• TRI--tristable pattern generator output channel

* ACQ--data acquisition channel up to 25MHz

41

* FAST--data acquisition channel up to 100Milz

" CLK--pattern generator clock output

, PS--power supply output that is further defined in the PSDEF section

As a matter of course the "ACQ" attribute is attached to as many of the input channels

as possible to monitor the input patterns. The end of each section is the key word

END.

The TINIEDEF section sets the pattern and acquisition clock. Remember, that

in the DVS50 the two clocks must be equal, so the program allows only the "PAT" input

and that can vary from 40ns to 5ms. The THRESHOLD section sets up the threshold

voltage value. TTL is a predefined threshold voltage of + 1.5V but variable voltages can

be assigned ranging for -2v to 5v. Notice that the MOS option of-10.0V to +20.0V can

not be used in the DVS50. The PSDEF section details the values in mV and mA for

voltages and current respectively. The ground connection of the DUT must be defined

as 0 mV. Figure 13 on page 43 does not include a DATADEF section because the pat-

tern sequences are defined in the ".das" file. All ".src" programs must end with BEGIN:

and ENDS to control the DAS 9100 tester.

The "aas" file for NPS CORNSS is listed in Figure 14 on page 44. The first line

is the name of the program. The second and third lines are any two integers. These lines

are used in the test result program that will be discussed below. Line 4 specifies the

number of pins that DVS50 needs to generate patterns for. The pin names are then

listed in rows that correspond with the pattern sequence in the respective columns. I-or

example. the input channel PADIN will always have a pattern specified by colunm one

of the pattern sequence and CLO's pattern will be located in column 24. An EOF at the

end of the program indicates the end of the pattern.

The test result file ".A01" is in the same format as the ".das" file except that only

acquisition channels are reported. The clock rates for the pattern generator and data

acquisition modules are included in lines two and three respectively. This file can be

used to compare against another file transferred from the simulator output to validate

the output vectors.

This method of designating patterns and data acquisition parameters is much

easier and quicker that using the DAS 9100 keyboard. A translator program,

MOS2DAS, was written to generate the ".das", ".src", and the ".sim" files from the re-

sults of the MOSSIM II simulation. This translator will be discussed in the next chap-

ter.

42

PROGRAM chip;
PINDEF;
VCC :1, PS 2,
OUT2 2, ACQ;
OUTI 3, ACQ;
PADIN 4, PAT,ACQ;
PADOUT : 5, ACQ;
STSTOUT 6, ACQ;
IN16 :10, PAT,ACQ;
IN15 :11, PAT,ACQ;
IN14 :12, PAT,ACQ;
IN13 :13, PAT,ACQ;
IN12 :14, PAT,ACQ;
IN11 :15, PAT,ACQ;
IN10 :16, PAT,ACQ;
IN9 :17, PAT,ACQ;
IN8 :18, PAT,ACQ;
IN7 :19, PAT,ACQ;
IN6 :20, PAT,ACQ;
IN5 :21, PAT,ACQ;
IN4 :22, PAT,ACQ;
IN3 :23, PAT,ACQ;
IN2 :24, PAT,ACQ;
IN1 :25, PAT,ACQ;
DATACON :26, PAT,ACQ;
REFCON :27, PAT,ACQ;
MASKCON :28, PAT,ACQ;
SPCON :30, PAT;
TSTCON :31, PAT,ACQ;
GND :35, PS 1;
BMSBOUT :36, ACQ;
OUTCON :37, PAT,ACQ;
OUT5 :38, ACQ;
OUT4 :39, ACQ;
OUT3 :40, ACQ;
CLO :29, PAT,ACQ;
END;
TIMEDEF;
* Clockrate Pattern Generator.
PAT : ns 100;
END;
THRESHOLD;
* Threshold for Acquisition Module.
ACQ : TTL;
END;
PSDEF;
* Definition of Power Supply.
1 : mV 0;
2 : mV 5000, mA 3000;
END;
BEGIN;
END$

Figure 13. NPS CORN8S DVS5O .SRC File

43

CHIP
1
1

24
PADIN
IN16
IN15
IN14
IN13
INI2
IN1I
IN10
IN9
IN8
IN7
IN6
IN5
IN4
IN3
IN2
IN1
DATACON
MASKCON
REFCON
TSTCON
SPCON
OUTCON
CLO
111111111000000000010100
111111111000000000010101
111111111000000000010100
1i111111111000100100
11111111111100100101
111111111111111110100100
111111111000000011000100
111111111000000011000101
111111111000000011000100
111111111000000111000110
111111111000000111000111
111111111000000111000110
111111111000001111000110
111111111000001111000111
111111111000001111000110

1111i111000011111000110
111111111000011111000111
111111111000011111000110

Figure 14. NPS CORN88 DVS5O.DAS File

44

4. DVS50 Menus

Figure 15 on page 46. modified from Ref 20,p. 3-2, illustrates the system flow,

from verifying the configuration file. compiling the test program, to running the tests

and displaying the results. This flow is controlled by the use of menu driven screen dis-

plays. The first menu that the user encounters is the MAIN menu contains entries into

all the of the first level menus that are listed below:

" HELP

" Compile Test Program

• Restore Test Program

" Information

• Enter Test Menu

" Update Configuration File

* Display Test Data

" Compare Data

* Quit

The screen cursor is controlled by the arrow keys and a function or menu is called by

positioning the cursor and pressing the "Enter" key. The Update Configuration File is to

entered first if the user needs information about the configuration or needs to modif" the

current configuration due to a modification in the DAS 9100. This file mirrors the

modules that are installed in the DA:S 9100. power supply connections and controller

specifications. This file is set-up to the DAS 9100 current configuration and usually does

not need not be entered.

Usually. the user will select the Compile Test Program as the first entry in the

DVS50 menu. This menu uses the ".das " and ".src" programs that were previously

discussed and compiles a DVS control file and test pattern file to set-up the DAS 9100.

This program also checks for errors in the ".das" and ".src" files and creates the channel

specification list which describes the connections between the pattern generation and

data acquisition pods and the DUT. Figure 16 on page 48 is the channel specification

produced for NPS CORN88 and the hook up of this specification will be discussed latter.

The Restore Test Program uses the test files that were previously compiled in the Com-

pile Test Program menu.

After a test program file has been compiled the next step is to enter the Infor-

mation menu. This menu allows the user to list or print the following: the test program,

45

L..~.J :-4EXIT TO DOS
TEST PAG

GENMM1O L-w DVS HELP)

COMPILE-r13CO

TEST-----
PROG100

Figur 15.DVS5 Procssin Flo

46~

the test record and the compare data. The principle purpose of entering this menu is to

obtain a listing of the channel specifications created during the compilation of the test

programs.

Once the DAS probes have been connected to the DUT the Enter Test Menu

is entered and "run test" is selected. This sets-up the DAS 9100, generates the sequence

of patterns and the resulting acquired data from the DUT is uploaded to the PC. The
run test and compare" entry in this menu will run the test and compare the acquired

data to a reference file and report differences. Also, within this menu is the "enter device

commands menu". This sub-menu allows the user to send single commands to the de-

vices supported by the 91DVS. This function is used for debugging purposes and for

experienced users and is covered in detail in the DVS user's manual [Ref. 20,pp. 4-4,4-8].
The final DVS50 menu, and the most interesting to the user, is the Display Test

Result. When entering this menu. the user is prompted for the names of two files,

normally the recently acquired data file and a comparison file. Figure 18 on page 51 is

an example of an observation window of the displayed file. A timing diagram of up to

24 channels for the two files is overlaid on the display screen. Function keys are used

to expand and compress the screen, move the observation window left of right, and move

the cursors left or right. The other useful features of this display are controlled by the

command line. Channels can be listed, deleted, and inserted from this command line.

A "scale" command sets the width of the observation window and the "time" command

sets the beginning of the displayed window to the sequence specified. A "search" func-

tion. also available from the command line, specifies a particular bit pattern for which

to search.

The primary disadvantage of this of this display is that a hard copy of the

waveform timing diagram is unavailable, except through a print screen utility. This
provides adequate results for analysis and demonstration but not enough resolution for

inclusion in reports.

The 91DVS program greatly reduces the time spent in setting up the DAS 9100,

generating pattern sequences, and displaying test results. The capabilities provided by

the 91DVS are extensive enough for all but the most sophisticated user and it provides

an excellent indoctrination into digital signal analysis.

5. NPS CORN88

a. Set-up

One aspect of testing that remains, regardless of whether the DAS 9100 or

DVS50 techniques are used. is the connection of the DAS 9100 modules and probes to

47

*** CHANNEL SPECIFICATION LIST *

ATTENTION Connect the DAS-PODs to the pins of the DUT
according to the following list.
Take care - incorrect connections may cause
permanent damage to the DAS-PODs or the DUT

* Trigger channel(s): PG-POD ACQ-POD *
* 1B-STB-I 5D7-1 *
***** **************** ****************** ****** ************* **

* ACQ clock channel(s): PG-POD EXTCLK-POD *
* 1B-CLK-I 7C-CLK1-I *
********************* **************** **************** ***** **

* NR: NAME PINNUMBER POD(S) *
* PG ACQN ACQF other *

* 1 VCC 31 PS2 *

* 2 OUT2 32 5D6-1 *

* 3 OUT1 33 5D5-1 *

* 4 PADIN 34 1B7-1 5D4-1 *

* 5 PADOUT 35 5D3-1 *

* 6 STSTOUT 36 5D2-1 *

* 7 IN16 40 1B6-1 5DI-l *

* 8 IN15 1 1B5-1 5D0-1 *

* 9 IN14 2 1B4-1 5C7-1 *

* 10 IN13 3 IB3-l 5C6-1 *

* I IN12 4 IB2-1 5C5-1 *

* 12 IN11 5 1B1-I 5C4-1 *

* 13 IN10 6 1BO-1 5C3-1 *

* 14 IN9 7 1A7-1 5C2-1 *

* 15 IN8 8 IA6-1 5CI-1 *

* 16 IN7 9 1A5-1 5C0-1 *

* 17 IN6 10 1A4-1 5B7-1 *

* 18 IN5 11 1A3-l 5B6-1 *

* 19 IN4 12 1A2-1 5B5-1 *

* 20 IN3 13 IA' -l 5B4-1 *

* 21 IN2 14 IA0-1 5B3-1 *

* 22 IN1 15 2D7-1 5B2-1 *

* 23 DATACON 16 2D6-1 5B1-l *

* 24 MASKCON 17 2D5-1 5B0-1 *

* 25 REFCON 18 2D4-1 5A7-1 *

* 26 SPCON 20 2D3-1 *

* 27 TSTCON 21 2D2-1 5A6-1 *

* 28 GND 25 Psi *

* 29 BMSBOUT 26 5A5-1 *

* 30 OUTCON 27 2DI-l 5A4-1 *

* 31 OUT5 28 5A3-1 *

* 32 OUT4 29 5A2-1 *

* 33 OUT3 30 5A1-1 *

* 34 CLO 19 2D0-1 5A0-1 *

Figure 16. NPS CORN8S Channel Specifications

48

the pins on the DUT. Figure 16 on page 48 is the channel specification for NPS

CORNSS and illustrates the power supply, pattern generation, and data acquisition

DUT connections to be made.

The specified trigger channels for the pattern generator and data acquisition

must be connected together to initialize and sync the two modules. The pattern gener-

ator module is connected to the external clock pod to provide the clocking rate for the

DUT. To facilitate the connections of the numerous probes to the DUT, a test board,

Figure 17 on page 50, was built. Connections for the pattern generator and data ac-

quisition probes were provided to the DUT by quick release low insertion force con-

nections. Additional connections were provided for power supplies and jumpers. The

first connections to the test board are the grounds from the data acquisition pods and

power and ground from the pattern generation pod. To keep line losses at a minimum

the pattern generation probes have small amplifiers at the probe end called active pin

drivers, or podlets. While this reduces line loss, it does generate heat at the podlet. To

reduce heat build up in the podlet the power to the DUT should be left on for only the

length of the test. Additional components are installed on the test jig to improve per-

formance. The resistors eliminates possible podlet and DUT impedance mismatch.

Gold plated connector pins are installed on the board to prevent corrosion within the

podlet connector.

b. Results

The operational validation of NPS CORNS8 was accomplished with the
same reduced se, of vectors that was used for design validation in MOSSIM II.

Figure 18 on page 51 illustrates the results of the first test of the data register.

Table 10 on page 52. test 1, sets the initial register conditions for this test. Notice that

the resulting output is correct with a three clock phase propagation delay. The cursor

marks the beginning of the correct output data. The '0' is then rippled down the data

register bits to validate all the data input register bits, and the expected BCD value of

15 was observed at the outputs.

The second test sequence of vectors, where the output results should go

from 16-0 to test the combination adder circuitry, are illustrated in Figure 19 on page

53 with the initial register values in test 2 of Table 10 on page 52. Notice that the out-

put values for the 0 and 16 are the same, '00000'! This error occurred in all 12 fabricated

chips and indicated that the OUT5 pin was always at a '0' state. To determine whether

a fabrication error or a layout error was the cause of this malfunction, the MOSSIM II

test sequence was run again on the final layout design of the chip. The test result for the

49

co +

z =>

SIGNAL ho

Figure 17. NPS Test Jig

50

U.S

1.11*1 ~~~353 1- - - . - - . 2 2-------------- - I: 3j :5
- S--- liii

S t - -33 1 3 : : t I : £
- - - 3j 13 5:

S £~: :

a. 11 1 j I

112 3-
I: lit; ,, I

Q 2 5 -

- - - - s-

III i*I I

11.1! ~ .: -> --

L I
N I j~ I

2 -

I I
I I 2

tujI 3
uj - :1:1 - - -i

I 2 1 .
2 3

- SE pE~i .1

1,'1 3

~2 * ~ 23

C ~ YiI*IiTIyiJY*I....iTITIYihYmII.i..?mI.l..m.t

z-z
CEO
WOW

rfl(t4.Lfl.flflj- MNrC cus
~zzz rzzzzzzz zzzzzcwc
00000--- ----- --- ----- 0 ~

Figure 18. NPS CORNSS Data Register Test Results

51

Table 10. NPS CORN88 INITIAL REGISTER SET-UP
REGISTER TEST 1 TEST 2
DATA REG IN 0111111111111111 1111111111111111

REF REG I'*1111111 11111111

MASK REG IN11111111 11111111

XNOR REG OUT 0111111111111111 1111111111111111

BCD OUT DIGITAL 01111:15 10000:16
OUT

case of 16 matches resulted in the output 'XOOOO' vice '10000. Investigating further re-

vealed that Vdd was not connected to the final multiplexer controlling OUT5. After this

layout was corrected, the output for 16 matches was '10000' indicating that it indeed

was a layout problem not a fabrication problem that was discovered by the DAS 9100.

The third sequence of vectors that tested the reference bank by rippling an

error down the reference bank is illustrated in Figure 20 on page 54, with the initial

register values in Table 11 on page 56 test 3 values.

The masking tests started with no matches between the data and reference

register as illustrated in test 4 of Table 1 1 on page 56. Figure 21 on page 55 demon-

strates the effect of rippling two zeros, '00'. through the mask register to obtain an out-

put of '00010'. Additionally the odd values of masking combinations to further test the

masking feature. The partitioning of the layout design was verified by observing the

serial output STSTOUT after activating the testcon line and also observing the MSB line

from the combiner adder.

The previous test sequences verified the various register. the xnor circuitr'.

and the combiner adder for parallel operations. An additional test sequence needed to

be run to validate the serial input functions of the chip. A different test program was

written to test these features. The rewriting of the test programs brought to light a

limitation of this DAS 9100 configuration of only one 91A32 data acquisition module

and one 91S32 pattern generator module installed. While it was relatively easy to gen-

erate a new ".das" and ".src" file, this changed the pod assignments to the DUT and the

original connections had to be modified. This modification was required due to the limit

on the number of data acquisition channels that could be acquired. The original input

files used all 31 data acquisition channels including the monitoring of the 16 parallel data

52

IJI

cIy L . .

Ip rrNrrM M Tfl- .LLvI

0000--- ------ -- ----- Ow=
Figure 19. NPS CORN88 Combiner/Adder Test Results

53

.L

rtt. .

04.

ki0

Nt ..L .IL 0CI

H

T

*00

0

USIUNTU

A 00 - --- -- W
F igu21 P O SMsigTs eut

Table 11. NPS CORN88 REFERENCE AND MASKING INITIAL REGISTER
VALUES

REGISTER Test 3 Test J,
DATA REG INI11111111llllllil

REF REG IN 011111111111111 0000000000000000
MASK REG IN 1111111111111111 0011111111111111

XNOR REG OUT 0111111111111111 0000000000000000

BCD OUTDIGITAL 01111.15 00010.'2
OUT

input pins. The new program did not need to input a pattern or monitor the parallel

input pins. Therefore, a new testing scheme had to be developed to generate patterns

for the serial inputs and to monitor these serial inputs with data acquisition channels.

While the modifications took only a short time, it would have been convenient to have

an additional 91A32 installed so that the original program could have been written to

support the testing of both parallel and serial data inputs. Figure 22 on page 57 illus-

trates the serial data results.

The test results validated the operational functionality of NPS CORN88.

They also illustrated that the DAS 9100 series tester, in conjunction with the 91DVS and

DVS50 software. was capable of providing the necessary stimulus to test a full custom

VLSI chip.

56

* 2

LAA

I I I I I I

I a)
N~~~~~~ M*,L L.X U X(

0- - - A o-Wk -

I=== w =W,
* OI 3

57

IN,. NIOS2DAS TRANSLATOR

A. BACKGROUND
The MOSSIM II simulation program functionally validates a circuit design by using

test sequences to stimulate input pins and by monitoring the pins of interest. The test

engineer must develop a set of vectors within this test sequence to validate the proper

operation of the design. When the design has been validated and the chip has been

manufactured, the test engineer must again establish a test program for the manufac-

tured chip. With the NPS digital analysis system, which includes the DAS 9100

mainframe modular tester married to the DVS50 software, the test engineer inputs these

test sequences through the DVS5() ".das", ".src", and ".sir" input files.

An interactive translator that converts the test vectors that were defined in the

MOSSIM II simulation program to the DVS50 input files provides three major advan-

taces. The most obvious advantage of a translator is that it saves the test engineer's

time. MOSSIM 11 test sequences that were previously defined would be generated

without the test engineer having to input the duplicate pattern sequences in DAS format.

For a small test program the time savings would be insignificant, but as the test vector

sequence scheme became longer and more complex, more time would be saved. The

second benefit of using the translator is that the exact duplication of the MOSSIM I II

test pattern sequences and results are ensured. This is important because the results

of the fabricated chip should mirror the results of the MOSSIM II simulation. The third

advantage in using the translator is that the test engineer does not need to learn how to

produce the three DVS5O files. This is only a minor consideration because the input files

are relatively straight forward and easy to learn.

This chapter will discuss the capabilitiec and limitations of the MOS2D:AS translator

by examining the MOSSIM Il commands that are supported by the translator. Addi-

tionall,. the shell program that was developed to control the file manipulation involved

in the translation will be examined. The source code for the shell program and the

Fortran source code for the MOS2DAS translator are included in Appendix B.

B. MOS2DAS CAPABILITIES AND LIMITATIONS

1. MOSSIM II Commands

The MOS2DAS translator program generates three DVS50 input files from the

MOSSIM II ".cpy' and ".ntk' files: the test program file. ".src", the test pattern file.

5S

".das". and the test result file, ".sim". The ".cpy" file is used because it includes the out-
puts from the pins of interest. Several different conventions and commands can not be

translated to the DVS50 input files because the DVS50 can not support them. When

running the MOSSIM II program that the user wants to translate to DVS50 format, all
MOSSIM II software switches must be set to the default values as listed below:

• ternary 0

* sharing 0

* static 0

• restored 0

* pseudo 0

• weaken 0

* redundant I

• explain 0

• statistics 0

• echo I

* case I

Additional], all watch commands must be modified to watch even- phase. with the

"watch *- command. This allows the program to report at the transition of every phase
and more closely approximates what the DAS 9100 system will output.

Several NIOSSIM II commands are used in the translation process. but some

are not allowed. This is because the format of all the DVS50 input files requires that the
pattern generation program must identify every channel prior to the first clock cycle.

Therefore. all the pins and vectors of interest must be defined prior to the first cycle of
the MOSSIM II program. Listed below are the MOSSIM I1 commands and their
functions, as further defined in MOSSIM II user manual [Ref. 8.pp. 8-19] that are sup-

ported by the MOSDAS translator:

* CLOCK--Defines the clocking scheme consisting of a set of clock nodes and a set
of clock phases to be applied to these nodes. A MOSSIM II limitation is that, if
more than one clock is defined, each clock must have the same number of phases
in the sequence. For example, clock node phl:0010 and clock node ph2:1000 are
compatible non-overlapping clocks and are legal. The clock node phl:010 and
clock node ph2:0010 combination is not legal because the sequence length is not
the same.

* J'ECTOR--This is used to assign one name to an ordered set of nodes. For exam-
ple in Frigure 23 on page 61 the vector ins contains all the parallel input nodes from
inl-inl6. A mixture of input and output nodes are not allowed in any one vector.

59

" 14 TCH--This command allows the user to identify nodes of interest to be printed
out at each cycle command. To closely align the output of the MOSSIM II pro-
gram and the results obtained by the DAS series from the manufactured chip the
command "watch *' must be used to print the desired nodes after each phase of
the clock.

" SET--Sets the node to a specific binary value. Used to the generate the pattern
generation sequence on that node or vector. Similar to the FORCE command ex-
cept that the node or vector that is SET can be changed by the circuit operation
to a new value.

" FORCE--Sets the node to a specific binary value. This node will always be that
value, no matter what the circuit design tries to do to that node. The UNFORCE
is not supported because the DVS50 program can not change node assignments
after the first cycle command.

" CYCLE--This causes the network to run for a specified number of cycles. The
translator supports up to 20 cycles per command.

" OUT--This command indicates that the MOSSIM i; simulation program is con-
plete.

While this may seem to be a limited number of MOSSIM 11 commands, the test pattern

generation sequence can be long and quite complex. NPS CORN88 was tested with

these conmands and they proved to be acceptable. The remainiig key words that in-

voke MOSSIM II commands are not translated and the entire line that starts with a

command that is not supported is disregarded. MOS2DAS can translate three states

allowed by the MOSSIN II program at each node to the two states that are supported

by the DVS50 software. The MOSSIM II states '0' and '1' are translated to DVS5

states '0' and '1'. respectively, and the MOSSINI 11 X state is translated to a '0'.

2. File Comersion Process

The MOS2I)AS translator creates the ".das", ".src", and ".sim" DVS50 input

files. The ".das" file is used to define the input pattern generation channels. It identifies

the input pin or input vector by searching the ".ntk" file to determine whether it is an

input or output pin. The first pin name after the command vector is checked and, if that

pin is an input pin. then the vector is an input vector. The input array of pin names is

de eloped from the vector assignment and the set and force commands. Remember. all

input pins that are to he used in the DVS50 program must be defined prior to the first

cycle statement. This is because at the first cycle statement the array. of input pin names

is sequentially listed to the ".das"' file, with one pin name in each row. Figure 24 on page

62 is an example of a ".das" file. Each of the input pins is presented to the user by the

interactive translator program. The user must be able to determine whether the input

pin should be used for the translation and if the pin should also be monitored. The

60

>read CRchip.ntk
#1
1386 nodes, 2939 transistors, 0 blocks

>initialize
>clock clk:010
>vector ins inl in2 in3 in4 in5 in6 in7 in8 in9

inlO inll inl2 inl3 inl4 inl5 inl6
>vector control datacon maskcon refcon tstcon
>vector misc spcon outcon
>vector outs out5 out4 out3 out2 outl
>vector outl padout ststout bmsbout
>watch /* outs outl
>watch /* ins clk

>comment load reference data
>force ins:l1111111lll
> force control: 1000
>force padin:l
>force misc:11
>cycle 1

1.1 outs:00000 outl:100 ins:1lllllllllll1l clk:0
1.2 outs:00000 outl:100 ins:l1lllllllllllll clk:l
1.3 outs:00000 outl:100 ins:1ll1l1l1lll.1111 clk:0

Figure 23. NPS CORNS8 MOSSIM II Simulation Program

monitoring of the input pin will enable the user to display the input pattern during the

display of the test results.

Once the pin names have been defined, the values assigned to each input pin

name are determined by examining the force or set command for the vector or input pin

defined. These values are also stored in an array of input values and. when the cycle

command is recognized. the input pattern array is listed to the ".das" file as one row.

The only remaining value to define in the ".das" file is the clock. The clock pins are

handled by the DVS50 program as just another set of input pins. For each cycle of the

network the translator produces the same number of input patterns as there are phases

in the clock. For example, if there is a three phase clock, the ".das" file produces three

rows of binary data for each cycle of the network. The pin names assigned to the

clocking scheme are added to the input pin list directed to the ".das" file and the clock

phase value is appended to the row of input values.

61

CHIP
1
1

24
PADIN
IN16
IN15
IN14
IN13
IN12
IN11
IN10
IN9
IN8
IN7
IN6
IN5
IN4
IN3
IN2
IN1
DATACON
MASKCON
REFCON
TSTCON
SPCON
OUTCON
CLO
111111111111111111000110
111111111111111111000111
111111111111111111000110

Figure 24. MOS2DAS ".das" File

The remaining inputs to the ".das" file are the first four lines of the input file.

The first row of the file is the program name and that is obtained from the interactive

translator program. The second and third row of the ".das" file are any two integers.

The fourth row is the number of pins in the input array in the ".das" file.

The ".sir" file is used to compare the output of the MOSSIM II simulator with

the output from the DAS 9100 test system, ".A01". The pin names defined in the ".sim °

file. as noted in the example of Figure 25 on page 64, are derived from the data acqui-

sitici assignments requested in the interactive translator program. Each of these pins

in the ".src" program that have the attribute of 'ACQ" assigned will be listed to the

sim" file. When the pin names have been identified, the translator will search both the

62

input pin values using the set and force key words and the output line of the simulator.

Eacl, line of output will list a row of binary values to the ".sim" file. Except for lines two

and three, the first four lines are similar to the ".das" file. Lines two and three in the
".sir" file are timing data that was obtained from the ".src" file.

One difficulty with producing a ".sim" file is that the MOSSIM 11 and DAS 9100
system sample the output data at different times. DAS 9100 samples the data at the
leading edge of the pattern generator clock, and MOSSIM II samples the data after a

phase is complete. This sometimes results in a one phase delay for the output to be
observed by the DAS 9100. Figure 26 on page 65 illustrates the sampling differences

between the two programs and demonstrates the need to implement a one phase delay
of the MOSSIM II output to align the data. NPS CORN88 is an example of this output

misalignment. To properly align the two output files the MOS2DAS translator is able

to install a one phase delay in reporting the MOSSIM II output. During the interactive

program the user will be asked if a phase delay is required, with the default value of a

deia- inserted. 1. on comparison of the outputs. it is determined that a phase delay is
not required. then the user will run the MOS2DAS translator again asking for no delay.

While the MOSSIM II program will identify syntax violations the MOS2DAS
translation program will verify operational limitations imposed by the DAS 9100 module

set up. The current configuration allows 31 input pins and the ability to acquire data

on 31 pins of interest. This is because one channel from the data acquisition module is
connected to a channel on the pattern generation module to facilitate synchronous tin-

ing between the two modules. The MOS2DAS translator will check the requested input.
"PAT". and output ."ACQ'. pin names prior to listing the pin names to the files and

--ifv that the maximum number of input and output pins have not been exceeded. If

the input or output pin count exceeds the limit, the user is prompted with an error

message from the translator. This feature of the MOS2DAS program is easily modified

when the module configuration of the DAS 9100 tester changes.

As mentioned earlier, the ".src" test program file supplies the DVS50 program
with the pin assignments, assigns an attribute to each pin identified, sets up the defi-

nition of clock rates, determines the voltage threshold value for the circuit, and indicates
the specifications for the power supply. This ".src" input file, Figure 27 on page 66. is

generated by an interactive part of the MOS2DAS translator program. The program

lists all the pins defined in the MOSSIM II simulation program and asks the user to pick
an attribute and list the actual pin number on the fabricated chip. The output pins that

were identified in the MOSSIM II program will automatically be assigned the attribute

63

CHIP
100
100

31
OUT2
OUT1
PADIN
PADOUT
STSTOUT
IN16
IN15
IN14
IN13
IN12
IN11
IN10
IN9
IN8
IN7
IN6
IN5
IN4
IN3
IN2
IN1
DATACON
REFCON
MASKCON
TSTCON
BMSBOUT
OUTCON
OUT5
OUT4
OUT3
CLO
00110 11111111111111111110001100
0111011111111111111111100101101
0111011111111111111111100101100

Figure 25. MOS2DAS ".sian" File

of "ACQ", if monitoring is desired, and the input pins will be assigned "PAT" with an

option of also assigning the attribute of "ACQ" to these pins. It is wise to monitor each

pattern generator input line to display the pattern being generated. The power supply

pins are not included in the MOSSIM II program and the user will be prompted to

provide the names, pin assignment and supply voltageE. All other inputs required from

the user are requested for interactively with the valid options provided. When the ".src'

64

DAS SAMPLE MOSSIM SAMPLE

DAS 9100
CLOCK. a t

INPUT

OUTPUT

SAMPLED
OUTPUT

DAS 0 0 0 0 1 1 1 1 1

MOSSIM 0 0 0 1 1 1 1 1 0

Figure 26. DAS 9100 and NlOSSIM Sampling Differences

and "'das" input files are compiled by the DVS50 program a channel specification listing

will be generated to define the connections between the DAS 9100 and the DUT. The

DVS50 has the ability to control tri-state channels but that capability is not supported

by the MOS2DAS translator. For further information on the tri-state function of the

DVS50 consult the 91DVS user manual [Ref. 20.pp. 7-1.7- 4].

C. OPERATIONAL SHELL

A UNIX C-Shell program. "'MOS2DAS", was written to control the interactive file

manipulation required by the translator. This executable file, along with the "'mostral'"

Fortran program, is located in the U_ TOOLS directory and is executable by any user

that has access to the MOSSIM II simulator. This UNIX C-Shell program, Figure 2S

on page 6S. uses several UNIX utilities to manipulate the filer: awk. grep, and dill The

user invokes the \IOS2DAS translator by typing the f'ollowing command -t the UNIX

prompt: mos2das -. ntk> < .cpy>.

65

PROGRAM chip;
PINDEF;
VCC : 1, PS 2;
OUT2 2, ACQ;
OUT1 : 3, ACQ;
PADIN : 4, PAT,ACQ;
PADOUT : 5, ACQ;
STSTOUT : 6, ACQ;
IN16 :10, PAT,ACQ;
IN15 :11, PAT,ACQ;
IN14 :12, PAT,ACQ;
IN13 :13, PAT,ACQ;
IN12 :14, PAT,ACQ;
IN11 :15, PATACQ;
IN10 :16, PAT,ACQ;
IN9 :17, PAT,ACQ;
IN8 :18, PAT,ACQ;
IN7 :19, PATACQ;
IN6 :20, PAT,ACQ;
IN5 :21, PAT,ACQ;
IN4 :22, PAT,ACQ;
IN3 :23, PAT,ACQ;
IN2 :24, PAT,ACQ;
IN1 :25, PAT,ACQ;
DATACON :26, PAT,ACQ;
REFCON :27, PAT,ACQ;
MASKCON :28, PAT,ACQ;
SPCON :30, PAT;
TSTCON :31, PAT,ACQ;
GND :35, PS 1;
BMSBOUT :36, ACQ;
OUTCON :37, PAT,ACQ;
OUT5 :38, ACQ;
OUT4 :39, ACQ;
OUT3 :40, ACQ;
CLO :29, PAT,ACQ;
END;
TIMEDEF;
* Clockrate Pattern Generator.
PAT : ns 100;
END;
THRESHOLD;
* Threshold for Acquisition Module.
ACQ : TTL;
END;
PSDEF;
* Definition of Power Supply.
1 : mV 0;
2 : mV 5000, mA 3000;
END;
BEGIN;
END$

Figure 27. MOS2DAS ".src" File

66

this is the beginning of all C Shell programs
this checks if there are two auguments
if($#argv != 2)then

echo "usage: ntk2das <file.ntk> <file.cpy>"
exit

endif

set ntkfile=$1
echo $ntkfile:r
echo $ntkfile:r.cpy
#check to see if the input file is a valid ntk file
if(! -e $ntkfile) then

set ntkfile=$l.ntk
if(! -e $ntkfile)then
echo "cannot find the file $1 or $1.ntk"
exit
endif

endif

#check to see if the input file is a valid mos copy file

set mosfile=$2
if(! -e $mosfile) then

set mosfile=$l.cpy
if(! -e $mosfilelthen
echo "cannot find the file $1 or $1.cpy"
exit
endif

endif

convert the files to be used for the translator
egrep ^i $ntkfile I awk '[print $2 1' > ntkin.dat
egrep ^s $ntkfile >pout
egrep _ $ntkfile >pout2
diff pout2 poutl > pout2
egrep '> s' pout2 i awk '[print $4)' > ntkout.dat
mostral
cp mos.das $ntkfile:r.das
cp mos.src $ntkfile:r.src
cp mos.cmp $ntkfile:r.sim
rm mos.das mos.src mos.sim
rm poutl pout2 ntkin.dat ntkout.dat

Figure 28. MOS2DAS C-Shell Operating Program

The C-shell program then checks to insure that these files are valid files in the di-

rectory and then renames the ."ntk" file to "'transin.dat" for input to the "mostral"

67

translator. These utilities search the ".ntk " file that has been defined by the user and set

up a file of input pin names and a file of output pin names. These file names are

"ntkin.dat" and 'ntkout.dat " respectively and are used by the "mostra I" Fortran program

as input files. Now that the input files have been specified for the "mostral" translator

that executable program is called. The "mostral" program lists the ".das", ".src", and
"sim" files into the temporar" files "mos.das", "mos.src", and "mos.sim" respectively.

These files are then copied to the original file name with the new file extension of '.das",

"src, , and".sim". The temporary files are then erased and the translation process is

complete.

68

V. CONCLUSIONS

A. SUMMARY

This thesis validated the engineering methodology to produce a full custom, fully

tested, VLSI chip from an original design using Naval Postgraduate School assets.

During this validation process several elements of the design and testing phases were

noteworthy.

The first, and most important, element is the relationship between the design engi-

neer and the test engineer. These functions, while at NPS, are often performed by the

same individual, but, in the testing of NPS CORN88, the circuit design engineer and the

testing engineer were not the same individual. This separation of responsibilities more

closely duplicates industry's design and implementation of a full custom chip. When the

responsibilities for producing a functional chip are shared, these key individuals must

be involved from the initial design phase through the testing phase. Operating parame-

ters and specifications must be defined for both the circuit design engineer and the test

eneineer. NPS CORNSS was a completed functional design with only an overview of

the functions and capabilities provided. This made the testing strategy for the design

diflicult and could have lead to the development of invalid test routines.

Two MOSSIM II test routines were developed for NPS CORN88 at the functional

design validation level. One test vector sequence produced 21 16-bit vectors, to dupli-

cate all possible input values, and the second test sequence produce a greatly reduced

subset of' those vectors. Neither of these tests identified any problem with the circuit

design. When the fabricated chip was tested with the DAS 9100. an error in an output

pin w as discovered. This reduced set of vectors was again run on the final design that

was sent to fabrication. The error that appeared in the fabricated chip was duplicated in

the circuit design simulation. This could only occur if some modification of NPS

CORN8S has been done after the "final" testing. It is obvious that final testing must

be accomplished after the final design is complete and just prior to sending the design

mask to fabrication.

The concept of partitioning the design to allow for additional observability within

the circuit also proved useful. When the error was identified during the testing of the

fabricated chip. the fault was isolated to the final adder section. This was done by ob-

serving the outputs of the test register and the most significant bit from the combiner.

69

This was useful in the subsequent localizing of the error in the circuit design. While it

is important to increase the observability of a VLSI chip, the primary limitation that is

now associated with chip development is the limited number of pins in the fabrication

package. When a Ftandard frame package is used for fabrication, it is incumbent on the

circuit designer and test engineer to utilize any extra pins to improve observability.

The advantage of using MOSIS to produce a limited number of chips for a new

circuit design is also obvious. Being able to produce a small number of VLSI chips to

verify the design and fabrication process greatly reduces the financial and schedule risk

of large scale production. For a small expense, S1400, and a modest six week fabrication

schedule, twelve prototype VLSI chips were produced. The error that was discovered

during the testing of these fabricated chips would have been very costly if this had been

a large full scale production.

The engineering methodology for the design and production of a full custom VLSI

chip is well defined and adequate, but it requires knowledge of a CAD tool, MAGIC.

the MOSSIM II simulator and the interface between the two major components. The

flexibility that is gained by using the MAGIC layout editor and various simulator mod-

els is over shadowed by a silicon compilation system that controls the entire design and

testing process.

The DAS 9100 series tester as a stand-alone system is a capable and reliable digital

analxsis tool. A broad-based knowledge of the capabilities and testing procedures are

required before even the simplest test is performed, Another limitation of this system

revolves around the keyboard entries that are required to set up the system and to store

pattern sequences. This limitation would be somewhat overcome if the tape recorder

option was purchased to store this data so that the user would not have to reenter it

after every power down of the equipment. However, when the DAS 9100 series tester

is married to the 91DVS, and the DVS50 program the system is user friendly arid easy

to use for even the most inexperienced test engineer. This digital analysis package is

capable of generating comprehensive test pattern vectors and displaying the results for

analysis or comparison. The development of a translator, MOS2DAS, to convert

MOSSIM II test vectors to the two programs needed by the DVS50 makes the test en-

gineer job more efficient.

B. RECOMMENDATIONS

The current configuration of the DAS 9100 supports up to 32 data acquisition

channels and -IS channels for pattern generation. This adequately tests a 40 pin VLSI

70

chip. An additional 91A32 data acquisition module should be purchased (S5,480) to im-

prove the VLSI data acquisition to up to 64 pins. If the DAS 9100 is envisioned to

operate as a stand-alone tester, the addition of a tape iecorder module would be con-

sidered essential. If the DAS 9100 continues to operate with the DVS5O software the

addition of a tape recorder is not necessarv. The current power supply configuration for

the DAS 9100 only supports one set of voltages. Because there are many power supplies

at NPS that could easily be added to the DAS 9100 system the purchase of the power

supply module is not recommended.

Additional suggested research topics or projects are providing a translator from the

GENESIL silicon compiler to DVS50 user programs and modifying the DSV50 software

to allow the user to print a graphic display of digital waveform results. The current

method is to capture and print the screen with a utility and that provides only moderate

resolution.

C. BENEFITS

The benefits of this research were fou-fold. A very thorough understanding and

appreciation of the methodology for producing a custom VLSI chip with the MAGIC

layout was gained and presented to the reader. The digital test facilities at NPS were

exanined, discussed, and a testing methodology was presented. Being able to follow a

MAGIC circuit design. NPS CORNSS. from design to testing of the fabricated chip was

truly cratitine.

This thesis developed two tools that are related to the NPS digital analysis test fa-

cilitv. The MOS2I).,\S translator will allow the digital test engineer to concentrate on

the development of.MOSSIM 11 test vectors. The vectors that functionally validate the

circuit design can be translated to the DVS50 input format, saving the test engineer time

in testing the fabricated chip. Finaly, the new user will find an introduction to the NPS

digital test facilities in the tutorial provided in Appendix A.

71

APPENDIX A. NPS DIGITAL TEST FACILITY TUTORIAL

A. PURPOSE
The purpI-ose Of this tutorial is to provided an examination of the digital test facilities

(1)T1 I at the Naval Postgraduiate School (N1IS). These test facilities at \PS include a

divital anlalsis systeml, Tektronix DAS 9100 series tester, controlled by the device vecr-

ification software (I)VS50) installed on a personal computer (IT). While the DAS 9100

series, tester can be operated as a stand-alone tester, the NPS configuration includes the

link to tie l)VS*) software, and that will be the configuration discussed in this tutorial.

L,-o t riald %ill provide anl overview of the capabilities and limitations of the digital

.* i oly it will us.. the arithmetic logic unit (ALIASI) as at vehIic

ti ehdology . tupon comnpletion of this tutorial the uiser willl be able

f)t1iles For the I)VS50. set up the device under test (IMI). and

..- in enus provilded by the I)\S5() programi to compile and runT at test.

A!- ~ :. I Tes t resultsN.

B~. A P UllI I I ILFs AN*sD L IMNITATI ONS
AN i U~i t he pi-ccedin~i section. the DTF is comiposed of mnany units. L-ach

(TlIWC prt)% 1de Nome capabilities as well ats sinme limitations. 'I hie Di F IIis

L01ii;S,i:J a:Tkl I ektromrli. l).S 910 liiNeries tester. 1)VS50 solftware onl a PC host, at

p~~111 It' er')IL.~ '.am atI lie he~art of' the systemi is the)A S 9II l(%which performils

TIhC:rci at c1iiir fr-om and lpttern generaition to a 1)1'.1 hecapabilities

(d Thle l).\S ,]il) ar eibe ased onl thle Modules that are Installed InI the l).S

I'j.Li11!r.1[ic, I iiu. curic:it conficuration can sup1port 312 channelsCI of data acqutisition and

4~ cim>ofPattem 1ii Lcenetation. 'I hie installed m~odules ialso set the timiing capabilities.

I 11C LUrrelt cLf eu121rit10n cal) support at tininu rate fromn 4flnS to 5niS or at ina\'simunl

rate Of 2. NIl 1/. '1 hc D):S 9()I()) sets uIP the connectivity to the 1)1I anid controls the

cluck;nLe o)f the sysvmfl

I quail k iniporr at to the 1) 11: Is thle LW*S5(1 software, hosted onl a personal corn-
putei~ culci ith the l)AS 1 (M. 'I isl software is mienu driven and uses the file

ecura onfil. . rit lrd the test pattern 11le. '.do s, to control the)A S 9 100. If' the

Ilicart (of the: 1) 11 is thc D);S 9100. then the braini, of the systemi IN the I)VS5() software.

I lie t\%. acoilipritie are Connected with at genecral p.irpose iriteti tce board. I lie
L11ir~. 1 (w-1i:1L the l)\S. (I softwaire Is tlle patternl imcrt-iton Janck aid the da!t

acquisition clock are tied together and can not be run at separate speeds. Additionally,

this clocking scheme takes one data acquisition channel and one pattern generation

channel, so the current system is limited to 31 channels of data acquisition and 47

channels of pattern generation.

The power supply provides for 5 volts at 3 amperes. This restricts the current con-

figuration to TTL logic levels, but the system can easily be configured to handle addi-

tional power supplies if necessary. The test jig was designed and manufactured to make

connecting the module probes to the chip easier. The test jig can handle up to a 40 pin

chip, but the test jig could be expanded. In summary. the DTF offers an excellent tool

to test digital chips and the capabilities and limitations are summarized below.

* 31 DATA ACQUISITION CHANNELS

* 47 PATTERN GENERAT-ION CttANNELS

* 4_)nS-SmS CLOCK RATE

* TTL OR ECL LOGIC LEVEL

e PO\VLR SUPPIY ONLY 5 VOLTS AND 3 AMPERLS

9 TEST JIG SUPPORTS UP -O 40 PINS

C. DVS50 INPUT FILES

I he two files that are required by the DVS50 software are the ".src" and the ".das'"

files. The ".src file gencrates the configuration for the DAS 9100 and the "'.das' file

contains a description of the test sequence pattern to be generated. The arithmetic logic

unit model 1 S1. ALL_ 181. will be used to demonstrate the functions of each of these files.

The ALL IS 1 performs 16 binary operations on two 4-bit words. Figure 29 on pace 74

was assembled from a TT. lhandbook IRef. 21] and the addition of two 4-bit words will

be the operation implemented.

Tile -.src' file generates the configuration to the DAS 9100 and the ".das' file gen-

erates the pattern to the DAS 9100. A third file that can be used by tile DVS50 program

is the ".sim" file that can be used to compare the test results. These files must be created

prior to entering the DVS50 test menu. This can be done in three ways, as outlined in

Figure 30 on page 75. The first was is to generate the files on an editor the user is fa-

miliar with and copy that file from a floppy disk to the working directory, c: dvstest chip.

The second method of' producing a file is to create it on the VAX and use thc NFI

transfer method between the VAX and the PC. The third method is to access the ediL r

after being in the working directory. The two editors that arc available to that working

73

Connection Diagram Pin Designations

INPUTS OUTPUTS1
____________DESIGNATION PIN NOS. FUNCTION

At t 2 2 j 3 C, %@ llA3. A2. Al.A0 19. 21. 23. 2 WORD A INPUTS
124 Il 112 121 20 119 1,1 17 16 1 114 13 3 2 t O 1. 0 2 2O 8I P T

III 3. S2. SI.SO 3.4.5.6 FUNCTION-SELECT

I M 8 MODE CONTROL
INPUT

P3. P2. Fl FO 13. 11. 10. 9 FUNCTION OUTPUTS

A-8 14 COMPARATOR OUTPUT

P 15 CARRY PROPAGATE

P IS OUTPUT
1 2111 111 1 1 1111C-.. 16 INV. CARRY OUTPUT

II~ £8 SO 02 SI S17 d5 F 25 CARRY GENERATE
INPUTS OUTPUTS OUTPUT

V24 SUPPLY VOLTAGE
54181(J); 74181(j). (NI OND 12 GROUND

NUMBER PACKAGE COUNT CARRY METHOD
OP TYPICAL ADDITION TIMES ARITHMETIC/ LOOK AHEAD 13ETWEEN

SITS LOGIC UNITS CARRY GENERATORS ALU's

110o4 2001 1 0 NONE
5to 8 30 m 2 0 RIPPLE

910o 16 30 3 3014 1 FULL LOOK-AHEAD

11710o64 50 osSto16 210o5 FULL LOOK-AHEADf

al M 10 1 1 o"M 11 ACTIVE HIGH DATA_

I I I ~ A I #*I SELECTION M -H M -L: ARITHMETIC OPERATIONS

S S2S SOFUNCTIONS C H (.. wrp1 Cii, -t.h "~I

i S33 S2S1S

L L L L F-A F -A F A PLUS I
IL L L H F--B F -A . 8 F..(A 8)PLUS I

II5 11 ., L L H L F-AB F -A - i F (A .itPLUS 1

I L L H H F-C F -MINUSI12sCOMPLI F -ZERO
L H L L F ZB F -AFPLUS AS F AFPLUS ASPLUS 1

L H L H F -E F-IA -B81LUS AE FIA -IPLUS A§LUS 1
II. 12~ I's I I L H H L F -AO B F -A MINUSB13MINUS1I F -A MINUSB8

L H H H FiAB F-A MINUS I F-AB -

F~ 15 12 I H L L L F -A'S- F -A PLUS AB F -AFPLUS ABPLUS I
H L L H F -AQB F -A PLUSB8 F* A PLUS B PLUS I

IV0 VH L H L F .8 F-IA - 8)PLUS AS FA-.)ILUS ABPLUS I
H L H H F -AB F -AB MINUS I F -AS

H H L L F-i1 F -APLUSA" F-ALUSA PLUS I
H1 H L H F -A -B8 P-IA -B) PLUS A F -IA BI)PLUS APLUS I

H H H L F -A + F-I(A -BiFLUS A F -IA i) LUSA LUS I

H H H H P -A F -A MINUS I F-A
FIGURE 1

*Eachs bb i 1 hfte to the nlext moresignficant povlitiofi.

Figvure 29. ALUlSI Specifications

directon- are KEDIT and EDLIN. Whatever method is used to gzenerate the filies, they

must be located on the working directory r'flor to entering the DVS5Q program and the,,

should be removed from the workiniz directon- after the testing is complete.

7.4

CA>CO GAFPLUS
C:\GRAFPLUS>GRAFPLUS
1 - PRINTER
0 - SCREEN SET UP GAFPLUS
N -TEXT TO BE ABLE TO
N - COLOR PRINT DISPLAY
N - REVERSE
Y - HORIZONTAL
C'AGRAFPLUS>CD..

C:A>CD tNSTEMTCHIP GO TO WORKING
C:\DV$TEST\CHIP> DIRECTORY

IF FILES LOCATED ON A DRIVE:
oopy *:fllsnni*

IF FILES ARE ON VAX WHERE ARE THE
USE NFT COMMANDS DYS50 INPUT FILES?

IF NEED TO MAKE FILES:
KENT FILENM.SRC

C:\DSTES14HI>\DV50\DS50 GO TO DVS60
C:~STET',HIP~DV5~Ds~o MENU

Figure 30. DOS Comnrids and File Directory Flow~

The -. rc- file that was used f'or testing the ALL IS I chip is illustrated in Figure 3I

on page 7. This file w~ililidentify- the programn name. pin names, pin number asslien-

mieats, attribt ass;ivnnmnts to the pins, clocking rates, power supply requ icnrr. and

required logic level. Thie iltredfile is straight forward. but some comments are in

order to clarify: somec of the options. The attributes thi.z can be assigned to the pin. l'or

this example. are either the "PAT". -ACQ". or "PS'. The 'PAT" Utilibute identifies that

the pinl will be an input pin and a pattern channel is reserved by that name. The 'ACQ-

aittrilbute dclineates a data acquisition channel. It is important to monitor, acquire.

pattern cnieration channels to observ e these channels on the displayed6 results. TIhe "IPS'

atrbute indicates that the pinl il a power upplv that wxill be def-ined latter in the

"P'SD IIF" section. Thei other section, are self' e".planatorv ececpt fo(r noting, thaz the

power supply parameters must be given in millivolts and milliamps. The ground must

be defined as 0 mV for this section to be complete.
The ".das" file defines the test sequence pattern to be generated on the input pins.

Figure 32 on page 78 illustrates the ".das" file that generated the patterns sequence for

the ALU181 chip. The first line identifies the name of the chip and the next two lines
can be any two integers. The fourth line indicates the number of input pins. and that
is followed by each row containing a pin name. Each pin name corresponds to a pattern
column that appears after the last pin name. For example, the first pin name is "BY and
the binary value in column one of the test sequence is assigned to that pin name. The
last pin name will correspond to the last column in the test vector sequence. Values for

the test sequences were developed to test several combinations of input values and to

force the various combinations of output results.
The "'.sire" file in Figure 33 on page 79 is similar to the ".das" file but it contains all

the pin names that had the attribute of"ACQ" in the ".src" file. The only difference is

lines two and three which indicate the clocking rate of the circuit. The intention of this
file is to prepare the expected results prior to the test and then compare the actual results
to the calculated ".sir" file. This can be done during the display test feature of the

D.VS50. Once these files have been written the DVS50 menu driven program will be en-

tered to test the chip.

D. TEST PROGRAM COMPILATION

The DVS50 is a menu driven interactive program that uses "das" and ".src" files to

generate test patterns and control the DAS 9100 tester. The command to enter the
DVS5o prograrn is: "dvs50 dvs50", illustrated in Figure 30 on page 75. The first menu
that is encountered is the Main Menu and is illustrated in Figure 34 on page 81. To

select a menu in this main menu move the cursor with the arrow keys and use < enter>.
The Help menu will assist the new user in a brief summary of each menu item. The
Update Configuration File controls the configuration, but the DVS50 is set up for the

current configuration and this menu need not be entered.

The first menu usually entered is the Compile Test Program menu. After selection

of this entry the program will prompt the user for the ".src" and ".das" files of the pro-

gram to be run. The program will then compile these files and generate the DAS 9100
configuration an! create a channel specification file. If the ".src" and "das" files have

been previously compiled and the test programs saved, then the test program can be re-
stored by the Restore Test Program menu.

76

PROGRAM ALU181;
* test of the aritlimetic logic unit 74xx181

PINDEF;
* pin description
BO 1, PAT, ACQ;
AC 2, PAT, ACQ;
S3 3, PAT, ACQ;
S2 4, PAT, ACQ;
S1 5, PAT, ACQ;
So 6, PAT, ACQ;
CIN 7, PAT, ACQ;
M 8, PAT, ACQ;
FO 9, ACQ;
F1 i0, ACQ;
F2 11, ACQ;
F3 13, ACQ;
AEQB 14, ACQ;
P :-15, ACQ;

COUT 16, ACQ;
G 17, ACQ;
B3 18, PAT, ACQ;
A3 19, PAT, ACQ;
B2 20, PAT, ACQ;
A2 21, PAT, ACQ;
B1 22, PAT, ACQ;
Al 23, PAT, ACQ;
GND 12, PS 1;
VDD 24, PS 2;

END;
TIMEDEF;
* Pattern Generator Clock Rate.
PAT ns 200;
END;
THRESHOLD;
* Threshold for Acquisition Modules.
ACQ TTL;
END;
PSDEF;
* Definition of Power Supply.
1 : mV 0;
2 : mV 5000, mA 3000;
END;
BEGIN;
END$

Figure 31. ALUl181 ".src" File

I,

ALU181
1
1
14
B3
B2
B1
BO
A3
A2
Al
AO
CIN
M
S3
S2
Si
so
00000000101001
00010001101001
00100010101001
01000100101001
10001000101001
10010111101001
11001100101001
10011001101001
11111111101001

Figure 32. ALIl81 ".das" File

E. DUT SET UP

Once the ".sim and ".das" input test files have been compiled the information menu.

Figure 3-4 on page S I. is entered to determine the channel specification definitions. It

is recoyu-nended that the Printing item be selected first by pressing enter when the cursor

is at that position. This will toggle the printing from disabled to enabled. Then select

the channel specification entry, and the results will be printed. If nothing happens.

check to see if the printer cable is connected to the PC that is the host to DVSSO. -The

channei snecification list gives the trigger, clock, pattern and data acquisition con-

nections to the I)UT. With the ALUI1 channel specification. Figure 35 on page S3.

w m | |

ALU181
1
1
19
B3
B2
B1
BO
A3
A2
Al
AO
CIN
M
S3
S2
S1
So
COUT
F3
F2
F1
FO
0000000010100110000
0001000110011110010
0010001010100110100
0100010010100111000
1100100010100100000
1001011110100100000
100110010100101000
1001100110100100010
11iiiii0100101110

Figure 33. ALU181 ".sim" File

the lavout of the test jie. Figure 37 on page 85. and the module layout. Figure 3S on

page 86. the user can connect the modules to the DUT.

Certain procedures need to be followed to ensure that damage is not done to the

DUT or the DAS91)0. Power will remain off during the entire set up procedure. The

following steps are recommended for connecting the DUT, but they need not be ac-

complished in the order stated:

* .:::ENSURE TIAT TIIE POVER SLP1)LY IS OFF '

* Connect the grounds for the modules:

.79

N two pomona hook clips for data acquisition

a two wires, black and green, from the pattern generator

* one pomona hook clip from the external clock

* Connect power for the pattern generator module, red wire to + 5V

e Install the two 12 pin resistor pads and install them next to the 40 pin easy out,
with the wire connected to pin 12, gnd, and pin 24, Vdd.

* Connect power and ground to the chip.

" Connect a red wire from + 5V to row D, pin 24 of the test jig.

* Connect the capacitor between rows E and F of pin 24.

" The ground is connected with a small black jumper from row A to B on pin 12.

• Hook up the trigger.

" Pattern generator lB STB-1, probe 8, is connected to Acquisition channel
5D7-1.

" Use the jumper pin connections and ensure the reference side of the pattern
generator connected to ground.

* Hook up External Clock.

* ClkI (black wire). 7C-CLKI. to pattern generator, IB-CLK4 jumper pin con-
nections

• connect any ground to the reference side of the pattern generation probe.

* Install the ALULSI chip in the 40 pin connector. Ensure pins 1 and 24 are closest
to the power supply connections.

* Connect the pattern generator probes to rows C and D of the appropriate pin

• Connect the data acquisition probes to A.B and E.F of the appropriate pins. En-
sure that the reference line is to the outside of the test jig.

F. RUNNING THE TEST

Once the DUT is hooked up. turn the power on the DAS 9100 series tester. Then

enter the Enter Test Menu illustrated in Figure 36 on page 84. Once in the Test menu

select Run Test and then turn on the power supply when prompted by the program.

The DVS50 program will download the channel specifications and the test pattern se-

quences to the DAS 9100. The DAS 9100 will then run the test on the DUT, ALUISI,

and then upload the acquired data to the DVS50 program. When this data transfer is

complete, the DVS50 program will prompt the user to turn the power supply power off.

This is necessary because the podlets. the small circuit boards at the end of the pattern

generation probes, generate heat.

80

iN He I
Compile Test Frooram
Restore Test Frcram

Save Test Program

Information
Enter Test Menu

Update Con+iQuration File

Display Test Data

Compare Data

QLLi t

keys to move cursor: use <ENTER> to select.
1! !H1 PI'111 1 I ¢ NI N N IN N N' N H II'M M N' NH N'1' jM/ N NH MN N H N N N N M M II1 N I'H N' N1 N' NM N H Nq N' N/I.

Main MenL

.I M M11 N M I'IM /1 ! l I 1 P1 MP 1IN N1 M PI H1 M MN 1 /IN N MN N N N N N N I PN / M I11. I M PI I PI M PI '1 HN M IN NI' /1 H I1

List Test Program
1 List Channel Specification

List Test Record
List Compare Data
Printinq (DISABLED)

Return to the Main Menu

?ys to move cursor: use <ENTER: to select.
I M N /1 , 1'? N M H' IN , M IN /1I N' fIN P1/ I/ I H¢ NH H /qI!M ' lMM HN/ MN N/MIN H H I, HNHN N/ M1¢INN N /

Information Menu
Test Program in Use : ALUI8l

1/1 1 IlPi/I II P1 1 I /1 I M NH/IN/I M P1M M /1I'1 11 I M !1 PI / M M I1 I PI N / I 11 P1 I I lI 1 H PI NH /1 P1 N1M/MI M NH P

Figure 34. DVS50 Main Menu

Once the power supply is turned off, return to the Main menu and then enter the

Display Test Menu illustrated in Figure 36 on page 84. The program prompts for the

".A01" and the ".sim" files. The ".A01" file contains the results of the test run by the

DAS 9100. The ".sim"' file is developed by the user that includes the expected circuit

results. If no ".sim" file has been produced, then press the space bar and <enter> to

indicated no additional file is to be compared.

The waveform in Figure 39 on page 87 is the display from the two 4-bit word ad-

dition test of the ALUISI. This display can contain 24 pin names and corresponding

waveforms. The display window can be expanded, compressed, or moved to a different

time in the test sequence. Figure 40 on page 88 lists the additional commands available

to modify this screen. The only way to print out the display is to invoke the print screen

utility after the GRAFPLUS program has been installed. This installation mukt take

place before entering the DVS50 Main menu. The commands for installing the

GRAFPLUS utility are located in Figure 30 on page 75. Examination of'the displayed

test results should indicate that the ALUIS1 performed as designed.

G. CONCLUSIONS

The combination of the DAS 9100 and the DVS50 program offer the user a powerful

digital analysis tool. A chip with up to 41) pins with TTL logic can be tested by gener-

ating test sequence patterns and acquiring data on 31 channels. The ALUISI demon-

strated the testing methodology and verified the steps necessary to conduct a test.

Further information about the DVS50 program and the DAS 9100 series tester can be

obtained from the 91DVS User's Manual [Ref. 20] and the DAS 910() Operator's Man-

ual [Ref. 121.

82

ATTENTION Connect the DAS-PODs to the pins of the DUT
according to the following list.
Take care - incorrect connections may cause
permanent damage to the DAS-PODs or the DUT

* Trigger channel(s): PG-POD ACQ-POD *

* IB-STB-I 5D7-1

* ACQ clock channel(s): PG-POD EXTCLK-POD *

* IB-CLK-1 7C-CLKl-1 *

* NR: NAME PINNUMBER POD(S) *

* PG ACQN ACQF other *

* 1 BO 1 1B7-1 5D6-1 *
* 2 A0 2 1B6-1 5D5-1 *

3 S3 3. 1B5-1 5D4-1 *
* 4 S2 4 1B4-l 5D3-1 *

* 5 S1 5 1B3-1 5D2-1 *

* 6 SO 6 IB2-2 5D1-1 *

7 CIN 7 IBI-I 5D0-1 *
* 8 8 1BO-1 5C7-1 *
* 9 9 5C6-1 *
* 10 F1 10 5C5-I *

* 11 F2 11 5C4-1 *
* 12 F3 13 5C3-1 *
* 13 AEQB 14 5C2-1
* 14 P 15 5C-I *
* 15 COUT 16 5C0-1 *

16 G 17 5B7-1 *
* 17 B3 18 1A7-1 5B6-1 *

* 18 A3 19 1A6-l 5B5-1
* 19 B2 20 lA5-1 5B4-1 *

* 20 A2 21 1A4-l 5B3-1 *
* 21 B1 22 1A3-1 5B2-1 *
* 22 Al 23 1A2-1 5B1-1 *
* 23 GND 12 PSi *
* 24 VDD 24 PS2 *
* ,

Figure 35. ALUI8I Channel Specifications

83

H H Run Test
- Run Test and Comnare
* Enter Device Commands Menu

- Return to the Main Menu

keys to move cursor use -ENTER to select.
L iN N1I N MN PI 11 P1 M/ IN M M tIN H M M M I N H /IN M N/HPI M NH M N 111 M NI

Test Menu

Test Program in Use : ALU181
H 1N'- N /,N1 1 I 11fiNht P It M I N/111 N1 M M H I t I t1 /1MI/ 1 MtN/'IMM N H M NMI/ M NPIH/I'M/11'I

Figure 36. DVSS0 Test Menu

0o~ zOgO2
a.+

10 4
~ *'4

SIGNA bosSIGNA Hrm

]Fgue 7. Tet i g

A8

DATA ACQUISITION EXT CLOCK PATTERN GENERATION

PROBE PROBES

6A

K6D1
1B

, 21D

Figure 38. Physical Location of the Modules

S6

Nt

r OMTMCUVIAMULLLL

Fg r3. AUSReut

~S7

4-j
aJ z
ci Zz 4 z

2z~~~ Z)(C z

X: -4 -,4 W L 41

V CA Z to r=C

zzfl U) z E a f - E c z

:z c z z Z~

z0 r U 13 al 4 1 Z
%-. Z.4 4 L XC L

ZZ L Z. c 1- 4t 3-4 LEX

4-) U w
m4

z. W~ X

Zz. .- Zzz 4GJ zz4 4

x m z .) =
t:I 4 J. z + P3c

Z. -.4 Z a) -'4 IA Z~

XLZ J L L .4-) E
Z (D z J Z 0 04J C > to

zz>ZC 4-CPLnL4-OCP -4 Z
- - al W.-4L LaJ) C Lz

aj Z:W -L ~L 0 0
U z UL U U 4-
.- Z WU3 L L 0) z

Z > zz L A 0 M0 0 'o
t:(zU 'a aC r 1WW 0 4i z

Z Q LA WUCC CL0. LL SE4
U1 -I -M-4.-4 :1 n 4-

Z Zc- mCL w z

Z zo x 0O0D 0O 0O 01P
zZU W u E E EE e A to o

! Z: U It I I I I '.0

X zz L . 4
z Z 4. N. ~ t,) RfUlO0NW -'C
2z C U LL LL L LL LL. ' . 4

Figure 40. Display Help Menu

88

APPENDIX B. MOSTRANS TRANSLATION PROGRAM

This Appendix contains the "MOS2DAS"shell program that controls the file con-

version process for the "mostral" Fortran program that translates the MOSSIM II
program to DVS50 input programs. The "MOS2DAS" program requires the ".ntk" and
".cpy" files as input files and checks to see if they are valid files. The shell program then

converts the ".ntk" file into an input and output pin list, NTKIN.DAT and

NTKOUT.DAT. These files and the ".cpy- file renamed "CHECK" are used as input
files for the "mostral" Fortran translator program.

The "mostral" program will read the "CHECK" program one line at a time and look

for the key MOSSIM II commands. This program also generates an interactive session

with the user to define the desired pins, pin numbers, power supply definitions, and
timing requirements. The translator will then examine the "CHECK" file and converts

it to the "MOS.DAS", "MOS.SRC", and "MOS.SIM" DVS50 input files.

The shell program then renames the translator files to the correct extensions to the

".ntk" file name. The final action of the shell program is to erase all working files.

A. TRANSLATOR SHELL PROGRAM

this is the beginning of all C Shell programs
this checks if there are two auguments
if($10argv != 2)then

echo "usage: ntk2das <file. ntk> <file. cpy>"
exit

endif

set ntkfile=$l
#check to see if the input file is a valid ntk file
if(! -e $ntkfile) then

set ntkfile=$1 ntk
if(! -e $ntkfile)then
echo "cannot find the file $1 or $1. ntk"
exit
endif

endif

#check to see if the input file is a valid mos copy file

set mosfile=S2
if(! -e $mosfile) then

set mosfile=$2. cpy
if(! -e $mosfile)then

89

echo "cannot find the file $2 or $2. cpy"
exit
endif

endif

convert the files to be used for the translator
egrep i $ntkfile awk '[print $2] ' > NTKIN.DAT
egrep s $ntkfile >poutl
egrep _ $ntkfile >pout2
diff pout2 poutl > pout3
egrep '> s' pout3 awk '[print $4]? > NTKOUT.DAT
cp $mosfile CHECK
mostral
cp MOS.DAS $ntkfile:r.das
cp MOS.SRC $ntkfile:r.src
cp MOS.CMP $ntkfile:r.sim
rm MOS.CMP MOS.SRC NOS.DAS CHECK
rm poutl pout2 pout3 NTKIN.DA'" NTKOUT.DAT

90

B. TRANSLATOR SOURCE PROGRAM

ccCCCCCccCCCCCCCCCcCcCCcCCCcCCCcCCCCccccCCCCCCcCCCCCCCCcCCCCCCCccc
Cc PROGRAM MOSTRANS CC
CC INPUTS: NTKIN. DAT INPUT PINS CC
CC NTKOUT. DAT OUTPUT PINS CC
CC CHECK MOSSIM II .CPY FILE CC
CC OUTPUTS: MOS.DAS CC
CC MOS. SIM CC
CC MOS. SRC CC
CC CC
CC PURPOSE: TRANSLATE THE MOSSIM II .CPY FILE, CHECK, AND CC
CC TWO NTK FILES INTO THE THREE DVS50 FILES CC
CC CC
CC LIMITATIONS: CC
CC MAX NUMBER OF DATA ACQUISITION CHANNELS 31 CC
CC MAX NUMBER OF PATTERN GENERATION CHANNELS 47 CC
CC MAX NUMBER OF REPETITIVE CYCLES 20 CC
CC MAX NUMBER OF POWER SUPPLIES 9 CC
CC MAX PIN NAME LENGTH 10 CC
CC CC
CC * TO CHANGE THE MAX NUMBER OF DATA ACQUISTION CHANNELS CC
CC CHANGE MAXACQ IN SUBROUTINE SRC CC
CC ****** TO CHANGE THE MAX NUMBER OF PATTERN GENERATION CC
CC CHANNELS CHANGE MAXPAT IN SUBROUTINE SRC CC
CC CC
CCC

CCC

CC ARRAY DESCRIPTION CC
CC CC
CC NTKINPIN(40) INPUT PIN NAMES FROM .NTK FILE CC
CC NTKOUTPIN(40) OUTPUT PIN NAMES FROM .NTK FILE CC
CC MOSINVEC(20) INPUT VECTOR NAMES FROM MOSSIM FILE CC
CC MOSOUTVEC(20) OUTPUT VECTOR NAMES FROM MOSSIM FILE CC
CC VPOSIN(20) POINTER TO ENTRY INTO MOSINVEC CC
CC VPOSTRT(20) POINTER TO ENTRY INTO MOSOUTVEC CC
CC DASINPIN(40) INPUT PIN NAMES TO .DAS CC
CC DASOUTPIN(40) OUTPUT PIN NAMES TO .DAS CC
CC CHECK(8) HOLDS MOSSIM KEY WORDS CC
CC ALINE(80) HOLDS COMPLETE LINE FROM MOSSIM FILE CC
CCC

INTEGER I,FSTCHAR,LASTCHAR,IVNUMIN,IVNUMOUT,IVPOSIN,IVPOSOUT
INTEGER VPOSIN(20),VPOSTRT(20),CLKSZ,FSTCYCLE,CYCLENM,FINCNT
INTEGER NTKIN,NTKOUT,IVWATCH,WPOSTRT(40)
INTEGER VPOSTOP(20),IWAT,WPOSTOP(40),SIMCNT,DASCNT,FSTDEL
INTEGER CLKCNT,DASINCNT
CHARACTER*80 SIMLINE,DASLINE,COMLINE,BLANK80
CHARACTER*24 WORD,BLANK24,TEMPW,CLOCKNM(10),CLOCKVA(10)

91

CHAPRACTER*24 CLKNUM ,TCLKVAL
CHARACTER*40 DASIN PDASIN ,DASOUT
CHARACTER*10 INPUT,TENBLNK,WATPIN(80)
CHARACTER*l OWATVAL(40) ,DWATVAL(40)
CHARACTER*10 MOSINVEC(20) ,MOSOUTVEC(20) ,VWATCH(40)
CHARACTER*10 NTKINPIN(40) ,NTKOUTPIN(40) ,DASINPIN(40) ,DASoUTrIN(40)
CHARACTER*10 SIMNM(40) ,DASNM(40)
CHARACTER*2 CYCVAL(20)
CI{ARACTER*1 VCOMLINE(80) ,WATVAL(40) ,DELAY
CHARACTER*1 ALINE(80) ,BLANK
DATA CYCVAL/'19 3 '2',13! 94 v '6''l7' '8l 19! !l01 '11' 1121!

*'13' ,114'1,1'151,1161, 17!, 1'19 19,20'!
DATA BLANK24/' 1

DATA BLANK/' '/
DATA BLANK8O/' 1

OPEN(UNIT-1O,ERR950,STATUS='OLD' ,FILE='CHECK')
OPEN(UNIT=11,ERR=950,STATUS='OLD' ,FILE='NTKIN. DAT9)
OPEN(UNIT=12,ERR=950,STATUS='OLD' ,FILE='NTKOUT. DAT')
OPEN(UNIT=13,ERR=931,STATUS='NEW' ,FILE='MOS.DAS')
OPEN(UNIT=14,ERR=951 ,STATUS-'NEW , FILE=1MnS.CMP')
OPEN(UNIT=15,ERR=951,STATUS-'NEW' ,FILE='MOS. SRC')

WORD=BLANK 24
INT=O
FSTCYCLE=0
PINLONG=O
NM11DEL=0
DO 5 I=1,40

DASINPIN(I)=TENBLNK
NTKINPIN(I)=TENBLNK
NTKOUTPIN(I)=TENBLNK

5 CONTINUE
IVNUMINO0
IVPOSIN=O
I VNUMOUT=O
IVPOSOUT=O
FSTDEL=O
IWAT=O

C OPEN AND READ THE NTK FILES THAT HAVE THE INPUT AND OUTPUT PINS
READ(11,6O,END=70)(NTKINPIN(I) ,I=1,40)

60 FORMAT(A1O)
70 NTrKIN=I

CLOSE(11,ERR=950)
READ(12,80,END=90)(NTKOUTPIN(I) ,I=1,40)

80 FORMAT(A1O)
90 NTKOUTI

CLOSE(12 ,ERR=950)

100 FSTCH-AR=O
INT=INT+l
LASTCHAR=0

C READS IN A LINE FROM THE MOSFILE TO CONVERT

92

READ(10,110 ,END=950)ALINE
110 FORMAT(80Al)
cc LOOKS FOR KEY MOSSIM II COMMANDS

CALL NXT'WORD(ALINE ,FSTCHAR ,LASTCHAR ,WORD)
IF(WORD. EQ. '>VECTOR'.OR. WORD.EQ. '>vector')GOTO 400
IF(WORD.EQ. '>FORCE'.OR. WORD.EQ. '>force')GOTO 600
IF(WORD. EQ. '>WATCH' .OR. WORD. EQ. '>watch')GOTO 500
IF(WORD. EQ. '>CLOCK'. OR. WORD. EQ. '>clock')GOTO 700
IF(WORD. EQ. '>CYCLE'. OR. WORD. EQ. '>cycle')GOTO 750
IF(WORD. EQ. '>QUIT' .OR. WORD.EQ. '>quit')GOTO 999
GOTO 100

CCC VECTOR HANDLING AREA
400 TEMPW=BLANK24

CALL NXTWORD(ALIN7E,FSTCHAR,LASTCHAR,WORD)
TEMPW=WORD

C CALL TO GET NEXT PIN NAME
CALL NXTWORD(ALINE ,FSTCHAR,LASTCHAR,WORD)

C CHECK TO SEE IF PIN WAS INPUT OR OUTPUT PIN
C AND THAT WILL DETERMINE WHICH VECTOR TO FILL

DO 410 I=1,40
IF(WORD .EQ. NTKINPIN(I))GO TO 420
IF(WORD .EQ. NTKOUTPIN(I))GO TO 460

410 CONTINUE
PRINT *~,'ERROR IN PIN FILE'
GOTO 950

*420 IVNUMIN=IVNUMIN+1
MOSINVEC(IVNUMN)=TEMPW
IVPOSIN=IVPDSIN+1
VPOSIN(IVNUMIN)=IVPOSIN

*425 DASINPIN(IVPOSIN)=WORD
CALL NX-h'ORD(ALINE ,FSTCHAR ,LASTCHAR ,WORD)
IF(WORD .NE. 'NOWCRD')THEN

IVPOSIN=IPOSIN+l
GOTO 425

ENDIF
GOTO 100

460 I' NUMOUT= IVNUMOU T+ 1
M105OUT VEC(IVNUMOUT)=TEMPW
IVPOSOUT=IVPOSOUT+ 1
VPOSTRT(IVNUMOUT)=IVPOSOUT

465 DASOUTPIN(IVPOSOUT)=WORD
CALL NXTWORD(ALINE ,FSTCHAR ,LASTCHAR ,WORD)
I.F(WORD .NE. 'NOWORD')THEN

IVPOSOUT=IVPOSOUT+1
GOTO 465

ENDIF
VPOSTOP(IVNUMOUT)=IVPOSOUT
GOTO 100

cc THIS AREA IS TH{E WATCH SECTION
500 CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)

IF(WORD .EQ. 'NOWORD')GOTO 100

93

DO 505 I=1,IVNLMIN
505 IF(WORD .EQ. MOSINVEC(I))GOTO 500

DO 510 J=1,NTKIN
510 IF(WORD .EQ. NTKINPIN(J))GOTO 500

DO 515 I=1,IVNUMOUT
IF(WORD .EQ. MOSOUTVEC(I))THEN

IVWATCH=IVWATCH+1
IWAT=IWAT+1
VWATCH(IVWATCH)=WORD
WPOSTRT(IVWATCH)=IWAT

DO 514 J=VPOSTRT(I),VPOSTOP(I)
WATPIN(IWAT)=DASOUTPIN(J)
IWAT=IWAT+1

514 CONTINUE
IWAT=IWAT-1

WPOSTOP(IVWATCH)=IWAT
GOTO 500

ENDIF
515 CONTINUE

C THIS WILL CHECK IF THE OUTPIN HAS BEEN USED IN A VECTOR TO PREVENT
C DUPLICATION OF PINS

DO 516 I=1,IVPOSOUT
IF(lWORD. EQ. DASOUTPIN(I))GOTO 500

516 CONTINUE

C THIS AREA WILL CHECK TO SEE IF YOU WANT TO WATCH AN OUTPUT PIN
C. NOT IN A VECTOR

DO 12o ,T=l NTKOUT
IF(WORD .EQ. NTKOUTPIN(J))THEN

I WAT=IWAT+1

WATPIN(IWAT)=WORD
GOTO 500

ENDIF
520 CONTTNUE

GOTO 500

CC THIS AREA IS THE FORCE ACTION AREA
CC TWO THINGS CAN HAPPEN WHEN A FORCE COMMAND IS FOUND
CC 1. THE FORCE IS ON A VECTOR OR
CC 2. THE FORCE IS ON A SINGLE PIN
CC A. HAS THE PIN BEEN IDENTIFIED BEFORE
CC B. NEW PIN TO BE FORCED

600 CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)
CC NXTWORD IS EITHER A VECTOR NAME OR A INPUT PIN NAME
CC CHECKING FOR VECTOR NAME

DO 620 I=1,IVNUMIN-1
IF(WORD .EQ. MOSINVEC(1))THEN
CALL NXTWORD(ALINE,FSTCHAR,LASTCHAR,WORD)
DASIN(VPOSIN(I):(VPOSIN(I+1)-1))=WORD(1:LASTCHAR-FSTCHAR+I)
GOTO 100

ENDIF
620 CONTINUE

94

IF(WORD .EQ. MOSINVEC(IVNUMIN))THEN
CALL NXTWORD(ALINE ,FSTCHAR ,LASTCHAR ,WORD)
DASIN(VPOSIN(IVNU,IIN): VPOSIN(IVNUNIIN)+LASTCHAR-FSTCHAR)=

WORD(1: LASTCHAR-FSTCHAR+1)
GOTO 100

END IF

cc FORGE A PIN THAT IS NOT ASSOCIATED WITH A VECTOR
cc CHECK TO SEE IF THAT PIN HAD BEEN IDENTIFIED IN A VECTOR STATEMENT

DO 630 1=1,IVPOSIN
IF(DASINPIN(I) -EQ. WORD)THEN
CALL NXTVORD(ALINE ,FSTCHAR,LASTCHAR,,WORD)
DASIN(I: I) = WORD(1: 1)
GOTO 100

END IF
630 CO0NT I NULE

cc NEW INPUT PIN IDENTIFIED PUT INTO ARRAY AND GET ASSOCIATED VALUE
IVPOSIN=IVPOSIN+1
DAS1NPIN(IPOSIN)=WORD
CALL NXTWORD(ALINE ,FSTCHAR ,LASTCHAR ,WORD)
DASIN(IVPOSIN: IVPOSIN)=WORD(1:1)
GOTO 100

cc CLOCK
cc CLOCK AREA WILL ESTABLISH VALUES FOR CLOCK AND CLOCKSIZE
700 CALL NXI-h)RD(ALINE ,FSTCH-AR,LASTCH-AR,WURD)

IF(WORD .EQ. 'NOWORD')GOTO 100
CLKCNT=CLKCNT+ 1
CLOCKNI(CLKCNT)=WORD
CALTL NXWVORD(ALINL ,FSTCHAR ,LASTCHAR ,WORD)
CLOCKVA(CLKCNT) =WORD
CLKSZ=T-%STCHAR-FSTCHAR+ 1
GOTO 700

cc CYCLE
cc CYCLE AREA WILL INSERT CLOCK AND OUTPUT DAS LINE
750 CALL NXTW ORD(ALINE ,FSTCHAR,LAbrCHAR,WCRD-)

C LKNUM=WORD
FINCNT=IVPOSIN
DAS INCNT=FINCNT+CLKCNT
PDASIN=DASIN

75? DO 1753 JJ=1,CLKCNT
DASINPIN(FINCNT+JJ)=CLOCKNM(JJ)

1753 CONTINUE

C THE FIRST TIME CYCLE IS CALLED INPUT PINS ARE DUMPED TO MOS.DAS
C AND THE COMBINATION OF INPUT AND WATCH PINS ARE DUMPED TO MOS.CMP

IF(FSTCYCLE .EQ. O)THEN
CALL SRC(WATPIN,IWAT,DASINPIN,DASINCNT,SIMNM,SIMCNT,

*DASNM ,DASCNT.DELAY)
WRITE(13,754)(DASNM(I) ,I=1,DASCNT)

754 FORMAT(A1O)

95

WFRITE(14,757)(SIMNM(I),I=1,SIMCNT)
757 FORMAT(A1O)

F STCY CLE 1
END IF
DO 760 I=1,20

760 IF(CLKNUM .EQ. CYCVAL(I))CYCLENM=I
DO 780 J=1,CYCLENM

DO 770 III=1,CLKSZ
FSTCHAR=O
LASTCHAR=O

C GOTO FILL AREA TO FILL NEXT LINE WITH SIM OUT DATA
900 READ(1O,901,END=950)ALINE
901 FORMAT(80A1)
902 CALL NXThORD(ALINE,FSTCHAR,LASTCHAR.WORD)
C LOOK FOR OUTPUT WATCH VECTOR TO MATCH

IF(WORD .EQ. 'NOWORD')GOTO 763
DO 930 I=1,IVWATCH

IF(WORD .EQ. WATCH(I))THEN
CALL NXIh'ORD(ALINE ,FSTCHAR,LASTCHAR,WORD)
K~ 1
DO 920 JJ=WPOSTRT(T),WPOSTOP(I)

WATVAL(JJ)=WORD(K: K)
K=K41

920 CONTINUE
GOTO 9021
ENDIF

930 CONTINUE

C OUTPUT FPIN FOUN IN SIMULATOR OUTPUT LINE
DO 940 JJ1I,IWAT

IF(WORD. EQ. WATPIN(JJ))THEN
CALL NXTWORD(ALINE ,FSTCHAR,LASTCHAR,WORD)
WATVAL(JJ)=WORD(1:1)
GOTO 902

ENDIF
940 CONTINUE

GOTO 902
763 DO 1763 JJ=1,CLKCNT

TCLK%'AL=CLOCKVA(JJ)
PDASIN('FINCNT+JJ: FINCNT+JJ)=TCLKVAL(III: III)

1763 CONTINUE
S IMLINE=BLANK8O
DASLINE=BLANK80

C COMBINE THE INPUT PINS AND WATCH PINS FOR COMPARE FILE
DO 766 Il=1-,DASCNT

DO 765 JI=1,DASINCNT
IF(DASN',I(IL) .EQ. DASINPIN(JI))DASLINE(IL: IL)=PDASIN(JI:JI)

765 CONTINUE
766 CONTINUE

DO 1767, LL=1I,DASCNT
1767 IF(DASLINE(LL:LL) .NE. '1')DASLINE(LL:LL)='0'

WRITE(13,767)DASLINE
767 FOR'IAT(A80)

DO 7t9 IL=1,SIMCNT

96

DO 768 JI=l,IWAT
IF(DELAY .EQ. 'Y' .OR. DELAY .EQ. 'y')THEN

IF(FSTDEL .EQ. O)THEN
OWATVAL(JI)WATVAL(JI)
ELSE
OWATVAL(JI)=DWATVAL(JI)
ENDIF
DWATVAL(JI)=WATVAL(JI)

ELSE
OWATVAL(JI)=WATVAL(JI)

END IF
IF(SIMNM(IL) .EQ. WATPIN(JI))THEN
SIMLINE(IL: IL)=OWATVAL(JI)
GOTO 1769
END IF

768 CONTINUE
1769 DO 772 ILL=1,DASINCNT

IF(SIMNM(IL) .EQ. DASINPIN(ILL))SIMLINE(IL: IL)=
*PDASIN(ILL: ILL)

772 CONTINUE
769 CONTINUE

FSTDEL1l
DO 1171 , LL=1,SIMCNT

1171 IF(SIALINE(LL:LL) .NE. '1')SIMLINE(LL:LL)=&O'
WRITE(14,771)SIMLINE

771 FORMAT(A80)
770 CONTINUE
780 CONTINUE

GOTO 100

cc THIS AREA IS WHERE THE OUTPUT VALUES ARE STORED IN THE OUTPUT
cc VARIABLES OF DASOUTPIN

950 PRINT *'INPUT ERROR PROCESSED'
GOTO 999

951 PRINT '*,'NEWFILE ERROR'

CLOSE(13 ,ERR=999)
CLOSE(14,ERR=999)
CLOSE(15 ,ERR=999)

999 STOP
END

97

CCCCcCCCCCCCCCcccccccccccccccccccccCCCcCcCCccCCCCCccCCCCccccCCccCCCc
cc cc
cc PROGRAM: MOSTRANS cc
cc SUBROUTINE: NXTWORD cc
cc INPUTS: ALINE CHARACTER LINE OF DATA cc
cc FSTCHAR FIRST CHARACTER POSITION OF LOOK AT cc
cc LASTCHAR LAST CHARACTER POSITION PRIOR TO cc
cc DELINEATOR cc
cc OUTPUT: WORD WORD OF INTEREST cc
cc PURPOSE: TO LOOK AT A CHARACTER STRING AND USING THE SPACE CC
cc AND COLON DELINEATORS PARSE THE NEXT WORD cc
cc cc
CC

SUBROUTINE NXTWORD(ALINE ,FSTCHAR,LASTCHAR,WORD)
INTEGER FSTCHAR, LASTCHAR,ZEROCH
CHARACTER*1 ALINE(80) ,BLANK,COLON
CHARACTER*24 WORD, BLANK24
DATA BLANK/' '/,BLANK24/' '
DATA COLON/': '/
FSTCHAR=LASTCHAR+ 1
ZEROCH=O
WORD=BLANK24
DO 200 I=FSTCH-AR,80

IF(ALINE(I) -EQ. BLANK .OR. ALINE(I) .EQ. COLON)THEN
GOTO 200

ELSE
IF(ZEROCH .EQ. O)FSTCHAR=I
ZEROCH=1

END IF
200 CONTINUE

IF(ZEROCH .EQ. O)THEN
WORD=' NOWORD'
GOTO 240

END IF

DO 210 J=FSTCHAR,80
IF(ALINE(J) .EQ. BLANK .OR. ALINE(J) .EQ. COLON)THEN

LASTCHAR=J-1
GOTO 220

END IF
210 CONTINUE
220 II=1

DO 230 K=FSTCHAR,LASTCHAR
WORD(II: II)=ALINE(K)
II=II+1

230 CONTINUE
240 END

98

CCCCCCCCCcCCCCCCCCcccCCCCCCCCCCccCCCCCCCCCCcCccCCCCcCCCCCCCCCCCCCCccCCCCC C,cc Ic
CC PROGRAM: MOSTRANS CC
CC SUBROUTINE: SRC CC
CC INPUTS: WATPIN ARRAY OF WATCH PINS CC
CC IWAT NUMBER OF WATCH PINS CC
CC DASINPIN ARRAY OF INPUT PINS CC
CC DASINCNT NUMBER OF INPUT PINS CC
CC OUTPUTS: SIMNM ARRAY OF OUTPUT PINS CC
CC SIMCNT NUMBER OF OUTPUT PINS CC
CC DASNM ARRAY OF PATTERN PINS CC
CC DASCNT NUMBER OF PATTERN PINS CC
CC DELAY ONE PHASE DELAY CC
CC CC
CC PURPOSE: INTERACTIVE PROGRAM THAT WILL LIST THE INPUT AND CC
CC WATCH PINS AND THE USER WILL PICK THE ONES THAT CC
CC SHOULD BE TRANSLATED. A DELAY CAN ALIGN THE ".SIM" CC
CC AND ".A01" DVS50 FILES. CC
CC CC
CC

SUBROUTINE SRC(WATPIN,IWAT,DASINPINDASINCNT,SIM NM,SIMCNT,
*DASNM,DASCNT,DELAY)
INTEGER I,IWAT,SRCPIN(40),DASINCNT,SIMCNT,SRCCNT,DASCNT
INTEGER PSCNT,PSAMP(10),PSVOLT(10),TIMEVAL,MAXPAT,MAXACQ
CHARACTER*10 WATPIN(5),SIMNM(40),DASINPIN(5),SRCNM(40)
CHARACTER*10 DASNM(40),TENBLNK,PSNANE,CHIPNM
CHARACTER*3 ATTA(40)
CHARACTER*4 ATTB(40)
CHARACTER*I APUN(40),PATMON,ACQMON,DELAY
DATA TENBLNK/' '/

MAXPAT=47
MAXACQ=31
DASCNT=O
SRCCNT=O
SIMCNT=0
DO 10, I=1,40
DASNM(I)=TENBLNK
SIMNM(I)=TENBLNK
SRCNN(I)=TENBLNK
ATTA(I)='
ATTB(I)='
APUN(I)='

10 CONTINUE
CC THIS STARTS THE DATA ACQUISITION SECTION
CC THE USER WILL BE GIVEN THE MOSSIM II WATCH PINS
CC AND HE WILL DECIDE WHETHER TO USE THE PIN AND GIVE THE
CC PIN NUMBER
CC SRCNM ARRAY HOLDS PINS FOR THE SRC FILE
CC SIMNM ARRAY HOLDS PINS FOR THE .SIM FILE
CC SRCCNT,SIMCNT COUNTS NUMBER OF PINS IN EACH ARRAY

WRITE(6,201)
201 FORMAT(1X,'WHAT IS THE NAME OF YOUR FILE?',/,

*lX,'EX. CHIP ***NO EXTENSION REQUIRED ')

99

READ(5,208)CHIPNM
208 FORMAT(A10)

WRITE(15,209)CHIPNM
209 FOR.MAT('PROGRAM',1X,A1O,/,'*',/,'*',/,'PINDEF;',/,'*')

WRITE(6, 11)
11 FORMAT(1X,',THERE ARE A MAXIMUM OF 31 DATA ACQUISITION, (MONITOR),'

*/'AND 31 PATTERN GENERATION CHANNELS FOR THIS DAS 9100 AND'
,/'DVS50 SOFTWdARE CONFIGURATION')

DO 50, I=1,IWAT
WRITE(6,15)WATPIN(I)

15 FORMAT(1X,'DO YOU WANT TO MONITOR ',A1O,'?')
READ(5, 18)ACQMON

18 FORMAT(Al)
IF(ACQMON .EQ. 'N' .OR. ACQMON .EQ. 'n')GOTO 50
SRCCNT=SRCCNT+1
S IMCNT=S IMCNT+1
IF(SIMCNT .GE. 32)GOTO 401
SRCNM(SRCCNT)=WATPIN(I)
SIMNM(SIMCNT)=WATPIN(I)
ATTA(SRCCNT)='ACQ'
APUN(SRCCNT)=';'
WRITE(6, 20)

20 FORMAT(1X,'WHAT IS THE PIN NUMBER? '
READ(5 ,30)SRCPIN(SRCCNTr)

30 FORMAT(12)
50 CONTINUE

cc THIS AREA WILL INPUT THE PATTERN PINS
C C AND WILL ASK THE USER IF THE PIN IS TO BE INCLUDED
cc AND IF MONITORING IS DESIRED

DO 100, I=1,DASINCNT
WRITE(6,60)DASINPIN(I)

60 FORMAT(1X,'DO YOU WANT A PATTERN ON PIN ',A1O,'?')
READ(5,65)PATMON

65 FORMAT(A1)
IF(PATMON .EQ. 'N' .OR. PATMON .EQ. 'n)GOTO 100
SRCCNT=SRCCNT+ 1
DASCNT=DASCNT+1
IF(DASCNT .GE. 32)GOTO 403
SRCNM(SRCCNT)=DASINPIN(I)
DASNNI(DASCNT)=DASINPIN(I)
ATTA(SRCCNT)=' PAT'
WRITE(6,70)

70 FORM4AT(1X,'WHAT IS THE PIN NUMBER? '
READ(5, 75)SRCPIN(SRCCNT)

75 FORMAT(I2)
WRITE(6,80)

80 FORM,,AT(1X,'DO YOU ALSO WANT TO MONITOR THIS PIN? '
READ(5,85)ACQMON

85 FORMAT(A1)
IF(ACQMON .EQ, 'N' .OR. ACQMON .EQ. 'n')THEN

APUN(SRCCNT)&;'
GOTO 100
ELSE
S IMCNT=SIMCNT+1

100

IF(SIMCNT .GE. 32)GOTO 401
SIMNM(SIMCNT)=DASINPIN(I)
APUN(SRCCNT),=','I
ATTB(SRCCNT)='ACQ;

END IF

100 CONTINUE

cc THIS IS THE POWER SUPPLY SECTION
PSCNTO0

105 WRITE(6,110)
110 FORMAT(1X,'THE USER WILL DEFINE THE POWER SUPPLY PARAMETERS' ,/,1X,

*'IN THIS SECTION. WHAT IS A PIN NAME FOR THE POWER SUPPLY?',/,
*' EX. VDD OR GND ***TYPE DONE FOR PIN NAME WHEN FINISHED '/

READ(5 ,115)PSNAME
115 FORMAT(A10)

IF(PSNAME .EQ. 'DONE' .OR. PSNAME .EQ. 'done')GOTO 200
PSCNT=PSCNT+1
SRCCNT=SRCCNT+ 1
SRCNM(SRCCNT)=PSNAME
WRITE(6, 70)
READ(5 ,120)SRCPIN(SRCCNT)

120 FORMAT(12)
ATTA(SRCCNT)='PS
IF(PSCNT .EQ. 1)APUN(SRCCNT)=' i'
IF(PSCNT .EQ. 2)APUN(SRCCNT)='2'
IF(PSCNT .EQ. 3)APUN(SRCCNT)='3'
IF(PSCNT .EQ. 4)APUN(SRCCNT)='4'
IF(PSCNT .EQ. 5)APUN(SRCCNT)='5'
IF(PSCNIT .EQ. 6)APUN(SRCCNT)='6'
IP(PSCNT .EQ. 7)APUN(SRCCNT)'7'
IF(PSCNT .EQ. 8)APUN(SRCCNT)=&8'
IF(PSCNT .EQ. 9)APUN(SRCCNT)='9'
ATTB(SRCCNT)=',
WRITE(6, 125)

125 FORMAT(1X,'WHAT VOLTAGE, IN mV, IS ON THIS PIN?',/,1X,
*''EX 5000 **~*NOTE GND MUST HAVE 0 '
READ(5, 130)PSVOLT(PSCNT)

130 FORMAT(I5)
WRITE(6, 135)

135 FORMAT(1X,'WHAT AMPERAGE, IN mA, IS ON THIS PIN?',/,1X,
*~'EX 3000 ***NOTE GND MUST HAVE 0 '
READ(5, 140)PSAMP(PSCNT)

140 FORMAT(15)
GOTO 105

200 WRITE(15,210)(SRCNM(I),SRCPIN(I),ATTA(I),APUN(I),
*ATTB(I) ,I1,SRCCNT)

210 FORMAT(A1O,':' ,I2,',' ,2x,A3,A1,A4)
cc THIS SECTION WILL INPUT THE TIMING REQUIREMENTS

WRITE(15,220)
220 FORMAT('END;',/,'*',/,'TIMEDEF;' ,/,*',/

,' CLOCKRATE PATTERN GENERATOR. '/''
WRITE(6,225)

225 FORMAT(1X,'WHAT CLOCKING RATE, IN nS, DO YOU WANT FOR THE'
,'CIRCUIT?',/,' FROM 40nS TO 0OOnS EX. 100 '

101

READ(5, 230)TIMEVAL
230 FORMAT(14)

WRITE(13,231)CHiPNM,TIMEVAL,TIMEVAL,DASCNT
231 FORMAT(A1O,/ ,14,/ ,14,/ ,13)

WRITE(14,232)CHIPNM,TIMEVAL,TIMEVAL,SIMCNTr
232 FORMAT(A10,/ ,14,/ ,14,/ ,13)

WRITE(15,235)TIMEVAL
235 FORMAT('PAT :n ,4''

WRITE(15,240)
240 FORMAT('END;',/,'*',/,'THRESHOLD;',/,''/

'* THRESHOLD FOR ACQUISITION MODULE.',/,'*',/,'ACQ flTL; ',/,
*'ENTD; ')
WRITE(15,202)

202 FORNMAT('*',/,'PSDEF',/,'*',/,'* DEFINITION OF THE'
*,'POWER SUPPLY.',/)
WRITE(15,205)(I,PSVOLT(I),PSAMP(I),1=1,PSCNT)

205 FORMAT(I1,' :mV ',15,', mA ',15,';')
WRITE(15,206)

206 FORMAT('END;' ,/, '*'?/
'',/,'*',/,'BEGIN; ,/,'END$')

WRITE (6 ,410)
410 FORMAT(1X,'DO YOU WANT A ONE PHASE DELAY IN THE OUTPUT TO'

*/,' ALIGN THE OUTPUT FILES FOR MOSSIM AND DAS 9100? 'Y ,N
READ(5 ,415)DELAY

415 FORMAT(A1)
GOTO 500

401 WRITE(6,402)
402 FORMAT(1X,' ****~ERROR7*** YOU HAVE EXCEEDED THE NUMBER',

*' OF PINS TO MONITOR',/,' YOU MUST RUN THE TRANSLATOR AGAIN.')
GOTO 500

403 WRITE(6,404)
404 FOMTl,***RO** YOU HAVE EXCEEDED THE NUMBER',

'OF PINS FOR PATTERN',/,' GENERATION. YOU MUST RUN THE',
"'TRANSLATOR AGAIN. ')

500 END

102

APPENDIX C. VECTOR GENERATION PROGRAMS

A. VECTOR SHELL PROGRAM

#This program will take vectors in vectors. out
#and input them to the MOSSIM II program crm
#and then compare the results the MOSSIM II
#program with a comvec. out and put the differences in
#a file called difres. out

echo ""

echo "start time of the program was ">difres.out
date>>difres. out
echo ""

rm -f mossim.nst mossim.bst
echo ""
echo "Disregard the below comments from Mossim."
echo "Be patient."
echo ""
mossim << +
sour crm
yes
sour vectors. out
q
+

edit CRresult. cpy<resmod. cmd>/dev/null
echo ""
echo "Only differences in the files are listed below. 3" > difres. out
echo -n "If there are no differences your files are matched." difres. out

echo ""
diff -b CR result.cpy comvec.out >> difres.out
echo "end time is >difres.out
date>>difres. out
else
echo ""
exit
echo ""
endif

103

B. VECTOR GENERATION C SOURCE CODE

/*This program will generate the number of 16-bit vectors that
is requested by the user. These vectors are written to the
vectors, out file. This program also computes the values for
the output vector from the 16-bit correlator, NPS CQRN88.
These output vectors are located in the comvec.oout file. *

#include<stdio. h>
#include<math. h>

float i;
float t2;
mnt j,k,l;
unsigned mnt maskl1,vec,nout;
mnt temp[16] , cout[5]
mnt tl,rtime;

main()

FILE *fpl, *fopeno;
FILE '*fp2, '*fopenoQ;
fplfopen(" vectors. out ,1 w"
fp2=fopen("comvec. out" ,"tw");

printf("How large do you want the vector, nit);
scanf("%06d" ,&t 1);

1* sscanf(argv[1] ,"5%d",&tl);*/
fprintf(fpl,"force control: 1000 n");
fprintf(fpl,"force select: 000 n");
fprintf(fpl,"force misc: 11 n");

for(iO; i<tl; i+4)[
vec~i;

for(j0O; j(15; j44)[
if(vec&mask)temp[j]i=1;

else temp[j]0O;
vecvec 1;

fprintf(fpl,"force ins: ");
f or(k=15; k>1l; k- -) I

fprintf(fpl ,"%d" ,templ k])

fprintf(fpl,"%d n",temp[0I)
fprintf (fpl, "cycle n");

1* computes the compare vectors and outputs to comvec.out*/
rtime=20;
for(iO; i<tl; i++)[

veci;
rtimertime+l;
nout0O;

104

for(j0O; j<=15; j-44)f
if(vec&mask) Itemp[j]=1;

noxit=nout+l;)
else temp[j]0O;
vecvec 1;

for(1=0; 1<=4;1++)[
if(nout&mask)cout[11=1;
else cout[l]0O;
nout=nout 1;

if(rtime<=99)
fprintf(fp2," %d't ,rtime);
else
fprintf(fp2 , d, rtime?;
fprintf(fp2, .3 outs:')

fprintf(fp2,"%d' cout[I1I);

fprintf(fp2," ins: ");
f or(k=15; k>=l; k- -)f

fprintf(fp2 ," d, temp[k])

fprintf(fp2 ,"%d ri ,tempt 0])

rewind(fpl);
rewind(f p2);
fclose(fpl);
fclose(fp2);

105

LIST OF REFERENCES

1. Reghbati, Hassan K., Tutorial: VLSI Testing & J'alidation Techniques, IEEE Corn-

puter Society, 1985

2. Designers' Buying Guide Computer Design, pp. 101-109. June 1, 1988

3. Scott, Walter S.: Mayo, Robert N.; Harnachi, Gordon; and Ousterhout, John K.,

1986 VLSI TOOLS: Still More Works by the Original Artists, Report No.

UCB CSD 86 272, Computer Science Division. Electrical Engineering and Com-

puter Sciences, University of California Berkeley, California, December 1985

4. Genesil System, System Description User's .1farual, Silicon Compiler Systems Cor-

poration. San Jose California, September 1987

5: Settle, R.t., Design Methodoloev Using the Genesil Silicon Compiler, Master's

Thesis. Naval Postgraduate School, Monterey, California. September 1988

6. Rockey. R.R., Silicon Compiler Imj'lemcntation of a Kalman Filter Algorithm as an

ASIC. Master's Thesis. Naval Postgraduate School, Monterey. California. Decem-

ber 1988

7. Davidson. John, Implementation of Design for Testability Strategy L'sing the Gencsil

Silicon Compiler, Master's Thesis, Naval Postgraduate School, Monterey,

California, March 1989

8. Bryant. Randy: Schuster, Mike; and Whitting, Doug, MOSSIM II. A Switch-Level

Simulator for MOS LSI User's Manual, Massachusetts Institute of Technology,

.May 12. 1986

9. R,'L 4.2 /UIV User's Guite, Northwest LIS Release 3.1. February 15, 1987

106

10. Vladimirescu. A.; Zhang K.: Newton, A.R.; Pederson, D.O.; Sangiovanni-

Vincentalli. A.. Spice User's Guide, Department of Electrical Engineering and

Computer Science, University of California, Berkeley, California, February 15. 1987

11. IOSIS user Manual, Release 3.0, University of Southern California, Los Angeles,

California,. 1988

12. D,4S 9100 series, Operators .11anual with Options, Manual # 070-3624-01,

TEKTRONIX, INC., Beaverton, Oregon, August 1986

13. Beck. Terence A., and Galinas, William J., "16-Bit VLSI Correlator Chip Design".

Unpublished Technical Report, Naval Postgraduate School. March 19S8

14. Scott, Walter S.; Mayo. Robert N.; Hamachi. Gordon: Ousterhout, John K.:

Taylor. George S., The Magic VLSI Layout Systeni. IEEE Design & Test. The In-

stitute of Electrical Engineers, Inc.. February 1985

15. Weste. Neil; Eshragnian. Kamran. Pinciples of CMOS VLSI Design A Systems

Perspective. Addison-Wesley Publishing Company, October, 1985

16. Coordinate Free Lap Reference Manual, Version 1-2, Northwest LIS Release 3.1.

February 15,19S7

17. Tomovich, Christine. IEEE Circuits and Devices Magazine, "MOSIS--A Gateway
to Silicon". VOL. 4. NO. 2. pp. 22-23. March 198S

18. Carleton, David A, 4 Pad Fraine Generator with Automatic Channel Routing for

VLS1 Chip Assembly, Master's Thesis, Naval Postgraduate School, Monterey

California. December 1988

19. HIatek, Eugene R.; Wilson, Beau R.. VLSI Design, "Practical Considerations in

Testing Semicustom and Custom ICs", Vol. 6, No. 3, pp. 20-42, March 1985

20. 91DI'S, Device Verification Software, User's Manual Manual ii 070-6072-00,

TEKTRONIX. INC.. Beaverton. Oregon, September 19S6

107

2.National Semiconductor. TTL DATA BOOK, National Sermiconductor Corpo-

ration, 1976

log

INITIAL DISTRIBUTION LIST

No. Copies

1. Def'ense Technical Information Center2
Cameron Station
Alexandria. VA 22304-6 145

2. Library. Code 01A422
Naval Postgraduate School
Mlonterev. CA 93943-5002

3. Chairman. Code 621
Department of Electrical and Computer Engineering
Naval Posturaduate Sc:hool
Nionterex . CA 939.43,-5o

4. Curricular Officer. Code 32
Naval Postgradulate School
Monterey. CA 93941-5004

~Prof'essor C. YanLe. Code 02)Ya
Nava%,l PosteraduateC School1
MIonterex,. C'A 93943i--5n04

6. Profos, or 11. Loomis. Jr.. Code 621.mn
Nava.l Pos tg-raduate School
NI ontcre%. C. 3 4-5l

Profesor NI. Cotton. C'ode 62CcI
Na'. a Postgraduate SLcho0l
M 0ontereN. CA9,94,-~(

S. Profe-sor C. 1I. Lee. Code 62L-eI
Naval Postgraduate School
Mlonterey. C-A 9-394-3-5004

9. Mvr. David C. Schaeffier. Code 62
Naval Postg~raduate School
Monterey. CA 93943-5004

10. Commander, Naval Research LaboratoryI
ATTN: Mlr. And-y Fox. Code 8120)
4555 Overlook Ave.. S.W.
Washington. DC 20375

11. Commander, Naval Research LaboratoryI
ATTN: Lt. Brian Kosinski. Ccde 91 10
-455,5 Overlook Ave.. S.WV.
Washington. DC(20375

109)

12. Dr. Allen Ross I
Consultant
604 Lisa Lane
Bowie. MD 20715

13. Mr. Hloward Z. Bocert
Consultant
20720 4th Street. =12
Saratoga. CA 95192

14. Professor Donald E. Kirk
Associate Dean of Linecrin
School of Lngineering
San Jose State Univcrsity
San Jose. CA 9-5070

15. I)r. Waldo G. MaLnu,on
l.awrcnce l.ivermore Nttional Laborator-
1.- 156

P Box SS
Livermore. CA 9455()

16. 1.(lDR Walter F Corlio,. II
232 '. Ricn,tra Street

-hul11 V\',t41. CA\110

110

